Сегодня река ДНК насчитывает примерно тридцать миллионов рукавов, ибо именно такова современная оценка числа живущих на Земле видов. Полагают также, что ныне живущие виды составляют около 1 % всех видов, когда-либо населявших Землю. Отсюда следует, что в общей сложности от реки ДНК ответвлялось приблизительно три миллиарда рукавов. Нынешние тридцать миллионов ответвлений разделены окончательно и бесповоротно. Большей их части предстоит иссякнуть, поскольку большинство видов вымирает. Если вы поплывете вверх по любой из этих рек (для простоты я буду называть рукава реками), то обнаружите, что все они по очереди присоединяются друг к другу. Река человеческих генов объединяется с рекой генов шимпанзе примерно в то же время, что и с рекой генов гориллы, – около семи миллионов лет назад. Если подняться еще на несколько миллионов лет вверх по течению, то можно увидеть, как наша общая с этими обезьянами африканская река сольется с потоком генов орангутана. Отойдя еще назад, мы увидим и ответвление реки гиббоньих генов – реки, впоследствии разделяющейся на целый ряд отдельных видов, к которым относятся гиббоны и сиаманг. По мере того как мы будем двигаться все дальше и дальше обратно во времени, наша генетическая река объединится с реками, дающими начало обезьянам Старого Света, обезьянам Нового Света и мадагаскарским лемурам. В еще более далеком прошлом наша река встретится с реками, ведущими к другим крупным группам млекопитающих: грызунам, кошкам, летучим мышам, слонам. А затем мы доберемся и до начала потоков, текущих по направлению к различным видам пресмыкающихся, птиц, земноводных, рыб и беспозвоночных.
Но в одном отношении с этой «речной» аналогией следует соблюдать осторожность. Когда мы рассуждаем об ответвлении, ведущем ко всем млекопитающим сразу, а не только, скажем, к серым белкам, есть искушение представлять себе нечто грандиозное, наподобие Миссисипи или Миссури. Ведь, в конце концов, этому рукаву предстояло ветвиться вновь и вновь, чтобы дать начало всем млекопитающим – от малой бурозубки до слона, от кротов под землей до обезьян на верхушках деревьев. Данному ответвлению суждено будет наполнять тысячи и тысячи магистральных водных путей, так как же ему не быть могучим, бурным потоком? И тем не менее такой образ глубоко ошибочен. Когда предки всех современных млекопитающих отделились от немлекопитающих, это событие было не более значительным, чем какой угодно другой случай видообразования. Оно прошло бы незамеченным для любого натуралиста, что оказался бы в то время поблизости. Новый рукав генной реки был бы для него всего лишь тоненькой струйкой, ютившейся внутри разновидности мелких ночных существ, которые отличались от своих немлекопитающих родственников не больше, чем рыжая белка от серой. Мы вообще только теперь, задним числом, можем отнести тогдашнее предковое млекопитающее к млекопитающим. В те же времена это была просто еще одна звероподобная рептилия – вероятно, едва отличимая от дюжины других видов небольших длинномордых насекомоядных созданий, служивших закуской для динозавров.
Так же без особой шумихи должен был произойти и более давний раскол между предками всех главных групп животного царства: позвоночных, моллюсков, ракообразных, насекомых, кольчецов, плоских червей, кишечнополостных и так далее. Когда река, которая впоследствии привела к моллюскам (и не только), отделилась от реки, ведшей к позвоночным (и не только), это были две популяции похожих друг на друга (и, вероятно, червеподобных) существ, способных скрещиваться между собой. Единственная причина, почему они не скрещивались, состояла в том, что они случайно оказались разделены каким-то физическим барьером – например полоской суши, перегородившей прежде единый водоем. Никому бы и в голову не могло прийти, что одной из популяций предначертано породить моллюсков, а другой – позвоночных. Две эти реки ДНК были бежавшими бок о бок ручейками, а две разновидности животных едва ли можно было отличить друг от друга.
Все это известно зоологам, но иногда вылетает у них из головы, когда они рассматривают действительно крупные таксономические группы вроде моллюсков или позвоночных и не могут совладать с искушением представлять себе разделение основных типов животных как событие огромной важности. В такое заблуждение зоологи могут впадать по той причине, что в них смолоду взращивалась почти что священная вера в то, что каждое из крупных подразделений животного царства обладает своим уникальным свойством, которое нередко называют немецким словом Bauplan. Это слово, хотя оно и означает просто «чертеж», сделалось общепризнанным научным термином, и я буду употреблять и видоизменять его наравне с обычными английскими словами, пусть даже оно и отсутствует (как я обнаружил к своему легкому удивлению) в последнем издании «Оксфордского словаря английского языка». (Поскольку я люблю это слово меньше, чем иные мои коллеги, то испытываю по поводу этого отсутствия некоторую сатисфакцию и приятный тремор; оба эти иностранных слова в словаре имеются, так что там нет предубеждения против заимствований как таковых.) При использовании в качестве научного термина бауплан зачастую переводится как «фундаментальный план строения». Вот это-то слово «фундаментальный» (или аналогичный ему переход на немецкий в целях нагнетания глубокомысленности) и есть источник неприятностей. Оно может подталкивать зоологов к серьезным ошибкам.
Так, один из них, например, высказал идею, что в кембрийском периоде (где-то между шестьюстами и пятьюстами миллионов лет назад) эволюция должна была представлять собой в корне иной процесс, нежели в последующие времена. Аргументировал он это тем, что в наши дни возникают новые виды, а в кембрии появлялись группы более высокого ранга – скажем, моллюски или ракообразные. Ошибочность таких рассуждений вопиюща! Даже столь радикально непохожие друг на друга существа, как моллюски и ракообразные, изначально были просто географически разделенными популяциями одного вида. В течение какого-то срока они могли бы скрещиваться при встрече, но встречаться им не доводилось. После того как на протяжении миллионов лет они эволюционировали по отдельности, у них появились те признаки, которые мы ретроспективным взглядом современного зоолога определяем как свойственные моллюскам или ракообразным. Пышный титул «фундаментальный план строения» или «бауплан» придает этим признакам важность. Но все главные баупланы животных обособлялись от общего источника путем постепенных преобразований.
Тут следует упомянуть о незначительном, хотя и породившем немало шума, разногласии насчет того, насколько плавно или «скачкообразно» движется эволюция. Но никто – в буквальном смысле никто – не считает ее настолько скачкообразной, чтобы новый бауплан мог возникнуть целиком и сразу. Автор, на чьи идеи я ссылался выше, излагал их в 1958 году. Немногие зоологи открыто встали бы на его позицию сегодня, но иногда они невольно ее подразумевают, когда рассуждают так, будто основные группы животных появились внезапно и полностью оформившимися: как Афина из головы Зевса, а не вследствие расхождения предковой популяции, разделенной случайным географическим барьером[6].
Как бы там ни было, молекулярно-биологические исследования показали, что крупнейшие группы животного царства гораздо более близкородственны друг другу, чем мы прежде думали. Генетический код можно рассматривать как словарь, где шестьдесят четыре слова одного языка (шестьдесят четыре возможные тройки четырехбуквенного алфавита) соответствуют двадцати одному слову другого (двадцать аминокислот плюс знак препинания). Шансы дважды получить такое соответствие 64:21 в силу случайности составляют менее одного к миллиону миллионов миллионов миллионов миллионов. И однако же у всех когда-либо виденных животных, растений и бактерий генетический код буквально один и тот же. Несомненно, все живущие на Земле существа происходят от одного-единственного предка. Никто с этим и не спорит, но теперь, когда мы изучаем уже не код как таковой, а точные последовательности генетической информации, обнаруживаются примеры поразительного сходства между, скажем, насекомыми и позвоночными. За сегментированное строение насекомых отвечает довольно сложный генетический механизм. И у млекопитающих тоже был найден невероятно похожий элемент генной машинерии. С молекулярной точки зрения все животные приходятся весьма близкой родней друг другу и даже растениям. За дальними родственниками нужно идти к бактериям, но и у тех генетический код идентичен нашему. Причина, почему на основании генетического кода можно уверенно делать подобные выводы, а на основании анатомических баупланов – нет, состоит в том, что генетический код является строго цифровым, а цифры – это как раз то, при помощи чего делаются надежные вычисления. Генная река – река цифровая, и теперь я должен объяснить, что же конкретно означает этот технический термин.
Инженеры проводят важное разграничение между цифровым кодированием и аналоговым. В проигрывателях грампластинок, магнитофонах, а также (до последнего времени) и в большинстве телефонов используется аналоговый код. А код, используемый в компакт-дисках, компьютерах и большинстве новых телефонных систем, – цифровой. Аналоговая система телефонной связи преобразует меняющиеся волны давления воздуха (звуки) в соответствующим образом меняющиеся волны электрического напряжения в проводе. Грампластинка работает по сходному принципу: неровности звуковой дорожки заставляют вибрировать иглу звукоснимателя, и ее движения преобразуются в соответствующие им электрические колебания. На другом конце провода мембрана наушника телефонной трубки или динамик электропроигрывателя превращают эти перепады напряжения обратно в колебания давления воздуха – так, чтобы мы могли их слышать. Данный способ кодирования прост и прямолинеен: электрические колебания в проводе пропорциональны колебаниям воздушного давления. Напряжение в проводе может принимать – в определенных пределах – любые значения, и различия между этими значениями имеют принципиальную важность.
А в цифровом телефоне передающееся по проводу напряжение может принимать только два значения – ну или какое-нибудь другое количество отличных друг от друга значений, например 8 или 256. И информация спрятана не в самих этих значениях, а в их последовательности. Такая техника называется импульсно-кодовой модуляцией. В любой отдельно взятый момент времени реальное значение напряжения редко в точности равняется какой-либо из, скажем, восьми допустимых величин, но приемное устройство округляет его до ближайшей из них, так что сигнал приходит на другой конец провода практически без искажений, даже если качество передачи так себе. Все, что требуется, – выбрать достаточно далекие друг от друга значения, чтобы случайные отклонения от них не были истолкованы принимающей аппаратурой ошибочно и отнесены не к той категории. В этом состоит огромное преимущество цифровых кодов и причина того, почему аудио- и видеосистемы – как и информационные технологии в целом – все больше и больше переходят на цифровые рельсы. Понятно, что компьютеры, что бы они ни делали, используют цифровой код. В целях удобства код этот двоичный, то есть уровней напряжения, которыми он оперирует, только два, а не 8 и не 256.
Даже если телефон цифровой, звуки, входящие в микрофон и выходящие через наушник, все равно представляют собой аналоговые колебания давления воздуха. Цифровой является только та информация, что перемещается от одной трубки к другой. Для того чтобы по-микросекундно переводить аналоговые показатели в последовательность дискретных импульсов – «оцифровывать» их, – должен быть разработан некий код. Когда вы умоляете по телефону своего возлюбленного или возлюбленную, каждый нюанс, каждое прерывание вашего голоса, каждый страстный вздох и тоскливый стон передается по проводу исключительно в форме чисел. Числа, если кодировать и декодировать их достаточно оперативно, могут растрогать вас до слез. Современные электронные переключатели работают так быстро, что время, используемое телефонной линией, может быть поделено на малюсенькие промежутки, подобно тому как гроссмейстер в ходе сеанса одновременной игры распределяет свое время между двадцатью досками. Таким образом, телефонная линия способна вместить тысячи разговоров – с виду одновременно, но на электронном уровне эти разговоры обособлены и друг другу не мешают. Магистральный канал передачи телефонных данных – в настоящее время многие такие каналы являются вовсе не проводами, а радиосигналами, передаваемыми либо напрямую от одной возвышенности к другой, либо рикошетом от спутников, – представляет собой громадную реку из цифр. Но на самом деле, благодаря искусному электронному разделению, это не одна, а тысячи рек, которые текут в одних и тех же берегах только в некоем поверхностном смысле – как рыжие и серые белки, что скачут по одним и тем же деревьям, но никогда не смешивают свои гены.
Если снова обратиться к миру техники, то недостатки аналоговых сигналов не играют большой роли, покуда сигнал не копируется многократно. Шипение магнитной ленты может быть слабым, едва заметным, если только вы не усилите звук – тогда оно возрастет и к нему прибавятся кое-какие дополнительные шумы. Но если сделать запись с этой пленки на другую, с другой на третью и так далее, опять и опять, то по прошествии сотни «поколений» не останется ничего, кроме ужасающего скрежета. Похожая проблема возникала и с телефонами – в те времена, когда они были аналоговыми. Любой телефонный сигнал, передаваемый по длинному проводу, постепенно глохнет, и его необходимо усиливать через каждые сто миль или около того. В аналоговую эпоху это было кошмаром для инженеров, поскольку доля фоновых шумов увеличивалась на каждом очередном этапе усиления сигнала. Цифровые сигналы тоже нуждаются в усилении. Но в этом случае, по уже известным нам причинам, оно не приводит ни к каким ошибкам: систему можно отладить таким образом, чтобы информация проходила по ней без искажений, независимо от количества промежуточных пунктов усиления сигнала. Даже на протяжении многих сотен миль шипение возрастать не будет.
Когда я был маленьким, мама говорила мне, что наши нервные клетки – это телефонные кабели организма. Но какого рода кабели, аналоговые или цифровые? Оказывается, любопытная смесь того и другого. Нервная клетка не похожа на электрический кабель. Она представляет собой длинную тонкую трубочку, вдоль которой, подобно искрам по пороховой дорожке, пробегают волны химических изменений, – с той разницей, что нерв, в отличие от пороховой дорожки, быстро возвращается в исходное состояние и после короткого периода покоя готов искриться вновь. Амплитуда волны – «температура пороха» – может в ходе перемещения по нерву меняться, но это не имеет значения. Для кода это все равно. Электрический импульс либо есть, либо его нет – как в случае двух дискретных уровней напряжения у цифрового телефона. В этом отношении нервная система является цифровой. Однако никто не укладывает нервные импульсы в прокрустово ложе байтов, не преобразует их в обособленные числа. Вместо этого интенсивность сигнала (громкость звука, яркость освещения, а может быть, даже накал страстей) кодируется в виде частоты импульсов. Этот способ известен инженерам как частотно-импульсная модуляция, и они охотно им пользовались, прежде чем принять на вооружение импульсно-кодовую модуляцию.
Частота импульсов – величина аналоговая, но сами импульсы цифровые: они или есть, или их нет, без каких-либо промежуточных вариантов. И нервная система, подобно любой цифровой системе, извлекает из этого выгоду. Она устроена так, что в ней тоже есть свои эквиваленты усилителей сигнала, только расположены они не через каждые сто миль, а через каждый миллиметр – восемьсот усиливающих промежуточных станций на пути от вашего спинного мозга до кончика пальца. Если бы абсолютная интенсивность нервного импульса – «горения пороха» – имела значение, то при своем перемещении по человеческой руке (не говоря уже о шее жирафа) сигнал исказился бы до неузнаваемости. На каждом этапе его усиления добавлялись бы новые случайные ошибки, как это происходит, когда мы переписываем что-либо с одной пленки на другую восемьсот раз подряд. Или когда мы делаем ксерокопию ксерокопии ксерокопии. Все, что останется после восьмисот «поколений» фотокопирования, – это серое размытое пятно. Для нервных клеток единственным решением данной проблемы было цифровое кодирование, и естественный отбор не преминул им воспользоваться. То же самое справедливо и для генов.
По моему мнению, Фрэнсис Крик и Джеймс Уотсон, разгадавшие молекулярную структуру гена, должны пользоваться почетом на протяжении того же числа столетий, что и Аристотель с Платоном. Им присуждены Нобелевские премии «по физиологии и медицине», и это справедливо, но едва ли не слишком мелко. Словосочетание «непрерывная революция» почти что противоречит самому себе, и однако же прямым следствием того переворота в мышлении, который спровоцировали двое этих молодых людей в 1953 году, стали непрекращающиеся революционные преобразования не только в медицине, но и в нашем понимании жизни вообще. Сами гены и генетические заболевания – это только верхушка айсберга. Подлинно революционным в молекулярной биологии после Уотсона и Крика оказалось то, что она стала цифровой.
О проекте
О подписке