Читать книгу «Питание спортсменов. Рекомендации для практического применения (на примере футбола)» онлайн полностью📖 — Сергей Парастаев — MyBook.
image

2.3. Виды питательных веществ – макро и микронутриенты (белки, жиры, углеводы, минералы, витамины и пр.) и их характеристика. Алгоритмы потребления (до, во время и после нагрузок)

Данный раздел во многом базируется на основополагающих выводах, изложенных в уже неоднократно упоминавшемся Отчете ведущих европейских экспертов по питанию (SCN EC, 2001 [15]) и последующих наиболее значимых согласительных заявлениях, написанных на его основе (IAAF, 2007 [35]; FIFA,2010 [1]; IOC, 2016 [12]).

Анализ накопленной на текущий момент информации целесообразно начать с самого важного с точки зрения обеспечения потребности спортсменов в энергии (особенно, при реализации нагрузок большой интенсивности), субстрата – углеводов (IOC, 2016 [12]), т. е. с категории А.

В определенные периоды годичного цикла подготовки спортсменов высокой квалификации не менее 70 % суточного поступления энергии должно обеспечиваться углеводами. Чтобы добиться целевого уровня потребления, на килограмм массы тела должно приходиться 9–10 г углеводов. Если говорить о футболистах, то у них такое количество показано лишь в периоды плотного соревновательного графика; вне их достаточно 5–6 г/кг, а в среднем – около 8 г/кг.

Надо отметить, что в последние годы уровень максимально допустимого потребления углеводов был поднят еще выше – до 13,2 г/кг массы тела (TrueSport, 2013 [36]).

Обозначенная ранее позиция об определяющем значении алгоритма потребления специализированных продуктов питания наиболее ярко проявляется именно в углеводной проблематике. То есть формирование рациональных представлений о потреблении углеводов позволяет осознать сущность вопроса о способах питания при подготовке к тренировочным и состязательным сессиям, во время их проведения и для восстановления организма после изнуряющих нагрузок.

Потребление углеводов в преддверии соревнований – в частности, при реализации «классического» метода углеводного насыщения, т. е. получения их избыточного количества в течение недели, предшествующей состязаниям (обязательное условие – постепенное снижение объема и интенсивности нагрузок). Первые 3 дня уходят на повышение общего содержания углеводов в суточном рационе, начиная с обычных 55–65 % энергетической ценности питания до 75 %; в течение последующих 4 дней достигнутый уровень потребления углеводов сохраняется. Этому соответствует их относительное содержание до 10 г на килограмм массы тела; в абсолютных значениях – это, в подавляющем большинстве случаев, не менее 600 г в сутки.

Обоснованным такой подход можно считать для повышения выносливости при преодолении длинных дистанций или в преддверии многодневных соревнований.

Что касается характера пищи, потребляемого непосредственно перед физическими нагрузками, предпочтительнее использовать продукты с углеводами, имеющими низкий индекс гликемии (табл. 5), так как они способствуют замедленному поступлению в кровоток и соответственно в ткани глюкозы, активизирующей метаболизм в мышцах.

Таблица 5

Индексы гликемии некоторых продуктов
(SCN EC, 2001 [15])


Примечание: полужирным выделены продукты с высокими значениями индекса, курсивом – с низкими.


Пища, съеденная не позже, чем за 3–4 ч до начала тренировки, должна легко перевариваться и содержать достаточное количество углеводов – 3,3 г/кг массы тела (True Sport, 2013 [36]).

В преддверии продолжительных нагрузок преимущественно аэробной направленности возможно также потребление углеводных растворов.

Питание в процессе соревнований является обыденным только для нескольких видов спорта. Например, марафонцы, велосипедисты и каноисты на длинных дистанциях, а также триатлонисты во время гонок потребляют в основном углеводы; это – и высокоэнергетические специализированные продукты (батончики, гели), и кондитерские изделия, поскольку они дают необходимое количество калорий и удобны для использования в движении. Конечно же, это и углеводно-электролитные растворы.

Потребление углеводов непосредственно в ходе выполнения продолжительных нагрузок в бóльшей степени соответствует проблематике углеводно-электролитных растворов – УЭР, а также и гелей на основе углеводов, о чем будет сказано ниже.

В отличие от питания до нагрузок процессу потребления пищи после их окончания внимание начали уделять лишь в последние два десятилетия минувшего столетия. Именно тогда пришло осознание того, что быстрое восстановление – это основа для повышения эффективности тренировочного процесса и успешного участия в соревнованиях, особенно если состязания проходят в ежедневном режиме. И важнейшее для этого условие – это пополнение запасов гликогена в мышцах. Недостаточная скорость данного процесса ограничивает возможности спортсменов.

Поскольку возобновление гликогена особенно активно происходит в течение первых часов после прекращения истощающих нагрузок, то потребление углеводов в этот период обеспечивает и более высокие уровни его продукции. В этот период все мероприятия должны быть ориентированы на ускорение ресинтеза мышечного гликогена. И здесь можно выделить два физиологически обоснованных подхода с доказанной эффективностью:

• оптимизация режима потребления углеводов;

• рационализация компонентного состава смесей, стимулирующих продукцию гликогена.

Наиболее эффективной признана следующая схема назначения углеводов после нагрузок: 1 г углеводов на килограмм массы тела непосредственно после завершения нагрузок и в том же количестве через каждые 2 ч в течение 6 ч восстановительного периода, что увеличивает продукцию гликогена на 50 %. Поступление углеводов в более высоком темпе (2 или 3 г/кг каждые 2 ч, т. е. более 1 г/кг в час) не влечет за собой более выраженного усиления эффекта, что во многом связано с возможностями ферментативных систем организма – оксидации может быть подвергнуто не более 1 г глюкозы в мин.

Выраженным эффектом ускорения ресинтеза гликогена обладает также совместное потребление углеводов и белка в соотношении 85–90 / 15–10[10]. Увеличение темпа продукции может достигать 30 %: если в обычных условиях уровень гликогена восстанавливается в течение 16–20 ч, то при сочетанном приеме это время сокращается вплоть до 12 ч. Подобный эффект, рассматриваемый как синергетический, индуцируется в основном аминокислотами с разветвленной цепью – BCAA.

Надо также отметить, что обеспечение организма углеводами стимулирует еще и выработку инсулина, который увеличивает поглощение глюкозы мышцами. Повышение уровня глюкозы в мышечной ткани представляет собой физиологический посттренировочный феномен, который является следствием активации транспортирующих белков (или транспортеров глюкозы, прежде всего GLUT4). Поэтому не удивляет тот факт, что наиболее эффективными для быстрого синтеза гликогена углеводсодержащими продуктами питания являются те, которые имеют высокий индекс гликемии (см. табл. 5): они не только обеспечивают экстренное получение организмом глюкозы, но и стимулируют резкое увеличение в плазме концентрации инсулина.

Но здесь возникает совершенно естественный вопрос: будет ли вместе с содержанием мышечного гликогена восстановлено и качество спортивного выступления? В анализе европейского экспертного сообщества [НКП] было констатировано, что соблюдение в течение периода восстановления углеводной диеты помогает сохранить выносливость при последующих нагрузках. Например, увеличивая потребление углеводов от 5 г/кг массы тела в обычном рационе до 10 г/кг в течение 24 ч восстановительного периода, бегуны на длинные дистанции смогли повторить результат 90-минутного забега, совершенного за сутки до этого. С другой стороны, когда они потребляли стандартное количество углеводов вместе с дополнительными источниками энергии, т. е. жирами, чтобы таким образом приравнять сумму полученной энергии к той, которая наблюдается при углеводсодержащей восстановительной диете, спортсмены оказывались неспособными к повторению результатов 90-минутного забега.

Таким образом, исследователи пришли к выводу, что именно дополнительное количество углеводов в восстановительной диете, а не получение энергии вместе с жирами, является фактором, определяющим скорейшее обретение прежней физической формы.


Категория В – углеводно-электролитные растворы (УЭР/CES) или, как их нередко называют, спортивные напитки.

Мотивация к их использованию – восполнение дефицита энергии, жидкости и минеральных веществ во время и непосредственно после нагрузок для предупреждения утомления и оптимизации раннего постнагрузочного восстановления. По мнению спортивных физиологов, именно истощение запасов гликогена и обезвоживание являются наиболее вероятными физиологическими причинами физического утомления (McNaughton L.R. 2000 [37]; Mujika I., Burke L.M., 2010 [25]).

Водный баланс в условиях основного обмена (пребывание в состоянии покоя при комфортной температуре и влажности) представлен в таблице 6.


Таблица 6

Баланс жидкости в организме

Самой вариабельной величиной в графе «Расход жидкости» является потоотделение. Так, в условиях основного обмена с потом теряется всего лишь 4 мл за час, что составляет менее 5 % от общей потери влаги организмом за этот временной интервал. К усилению потоотделения ведет прежде всего интенсификация физической активности; влияют также, но в существенно меньшей степени, повышение температуры воздуха и снижение его влажности. Даже умеренные физические нагрузки, реализуемые в максимально комфортных условиях, увеличивают интенсивность выделения пота в десятки раз – до 1200 мл в час; при этом доля теряемой с потом влаги может возрасти до 90 %. Еще активнее усиливает потоотделение спорт с его чрезмерными нагрузками и зачастую неблагоприятными условиями внешней среды. Например, во время марафонских забегов в жаркую погоду бегуны могут терять с потом до 7 л жидкости.

В случае адекватного восполнения подобные потери практически безопасны, т. к., физиологически допустимая убыль жидкости с пóтом, по мнению экспертов ВОЗ, может доходить до 10 л в сутки! Но, если игнорировать подобные потери, рано или поздно развивается обезвоживание.

Обычно его клинические проявления возникают при снижении объема плазмы на 10 %, что ориентировочно соответствует потере массы тела за счет жидкости примерно на 2 %; тренированные спортсмены более устойчивы к потере влаги – симптоматика развивается при дефиците 3 % (Арселли Э., Канова Р., 2000 [38]). Потеря 7 % – это вероятный отказ от работы, а 10–12 % – риск развития жизнеугрожающих состояний.

Клиническая симптоматика обезвоживания, по данным итальянских авторов, отмечается у 58 % регулярно тренирующихся (Sponsiello N. et al. [39]). В исследовании, проведенном в 2016 г. совместно с В.А. Курашвили (ВНИИФК), а также Т.А. Яшиным (ЦСМ ФМБА России), нами было показано, что лабораторные признаки нарушения водно-солевого баланса выявляются у 73 % футболистов (Парастаев С.А. и соавт., 2017 [40]).

Характеристики УЭР определяются четкими требованиями, которые были определены по четырем модифицируемым в фиксированных диапазонах параметрам (приведено по SCN ES, 2001 [15]):



Итак, спортивные напитки должны включать не менее 2 углеводов, в суммарной концентрации не более 8 % (тенденция последних 5–6 лет – снижение до 4 %, что в большей степени приемлемо для любительского спорта). Осмоляльность, создаваемая, как известно, содержанием растворенных веществ, задается в интервале от 200 до 330 мОсм на л: менее 270 мОсм – гипотонические напитки, а интервал 270–300 – изотонические; осмотическое давление гипотонических составов обеспечивается в основном полимерами глюкозы, а изотонических – ионом натрия. Помимо натрия в состав напитков могут вводиться и иные минералы, а также различные витамины (свойства некоторых коммерческих напитков представлены в Приложении 2).

Но здесь, по-видимому, требуются определенные комментарии по терминологическим аспектам и понятийному аппарату.

Осмоляльность – молярное количество осмотически активных частиц на килограмм растворителя (мОсм/кг H2O); в качестве близкой ей характеристики рассматривается осмолярность – молярное количество осмотически активных частиц на литр раствора (мОсм/л).

Например, в норме величина осмоляльности крови колеблется от 286 до 296 мОсм/кг. При падении данного показателя ниже 286 мОсм/кг H2O говорят о гипоосмоляльности, и наоборот, при превышении 296 мОсм/кг – о гиперосмоляльности.

Осмоляльность определяется тремя составляющими: натрием, глюкозой и мочевиной, причем на долю натрия приходится около 50 % осмотического давления.

В клинической практике осмоляльность регистрируют с помощью прибора осмометра, а в случае его отсутствия – расчетным путем, но лишь при условии, что концентрация глюкозы и мочевины крови в пределах нормы: величину данного показателя можно приблизительно определить, умножив концентрацию натрия в плазме на 2.

Тоничность – компонент осмоляльности внеклеточной жидкости, обусловленный концентрацией растворенных веществ, плохо проникающих через клеточные мембраны (Na+, в отношении некоторых тканей – глюкоза). Обычно осмоляльность и тоничность меняются однонаправленно, поэтому гиперосмоляльность подразумевает и гипертоничность[11].

Различают: гипо-, изо- и гипертоничность. Под гипотоничностью понимают снижение осмоляльности плазмы ниже 250 мОсм/кг, изотоничность характеризуется нормальными величинами осмоляльности – 286–296 мОсм/кг, а при гипертоничности – осмоляльность плазмы выше 310; при повышении осмоляльности плазмы выше 320 мОсм/кг развивается гиперосмоляльная кома.

Осмоляльность (тоничность) жидкости в сосудистом, интерстициальном и клеточном бассейнах одинакова (закон изоосмоляльности). Повышение или снижение этого показателя в каком-либо из секторов сопровождается миграцией воды из соседнего пространства в сторону гиперосмоляльности с целью уравновесить осмотическое давление. Так, при повышении осмоляльности в сосудистом бассейне происходит перемещение воды из интерстициального пространства в кровоток, а при повышении осмоляльности в интерстициальном пространстве происходит миграция воды из клеток. Следует отметить, что последнее из указанных направлений перемещения жидкости сопровождается обезвоживанием клетки, ее сморщиванием. При обратном движении – из интерстиция в клетку – происходит ее набухание с возможным разрывом клеточной мембраны и утратой функции.

Возвращаясь к проблематике потребления жидкости для предотвращения обезвоживания при высокой двигательной активности, следует отметить, что, согласно современным воззрениям, пить надо при продолжительности нагрузок более 1 часа. Каждый литр израсходованной на потоотделение жидкости должен быть немедленно возмещен, но не полностью, а лишь частично, чтобы не создавать дополнительную нагрузку на кардио-васкулярную систему; оптимальная степень восполнения дефицита влаги – 40–80 % (большинство спортсменов высокого класса покрывают в ходе выполнения нагрузок 50–70 % потерянной жидкости (Sponsiello N. et al. [39]).

Дополнительная информация о поправках, учитывающих индивидуальные особенности организма и изменение условий окружающей среды: повышение температуры на каждые 3 °C требует увеличения количества потребляемой жидкости примерно на 15 %, каждые последующие 5 кг массы тела – на 10 %; каждая дополнительная нагрузка продолжительностью 1–2 ч требует увеличения количества потребляемой жидкости в виде напитков и питьевой воды на 30–50 % (в зависимости от условий, в которых реализуется двигательная активность).

Но самое главное при обсуждении качеств УЭР – это то, что многочисленными исследованиями, выполненными в последние 10–12 лет, показано положительное влияние УЭР на спортивную результативность (см., например, Shirreffs S.M., 2009 [41]).

Что касается оригинальных подходов к совершенствованию рецептуры УЭР, то упоминания заслуживают два из них. Первый – обоснование оптимальных концентраций углеводов и минералов, а второй – повышение действенности напитков, сопровождающих продолжительные нагрузки, за счет использования комбинаций углеводов с неконкурентными механизмами трансмембранного переноса, а именно: глюкозы и фруктозы.

Проведенными исследованиями была доказана возможность снижения содержания важнейших составляющих спортивных напитков. Так, по регидратирующей активности 3-процентный раствор углеводов не уступает 6-процентному, но при условии содержания в нем хлорида натрия, который ускоряет абсорбцию воды в кишечнике (Shirreffs S.M., Maughan R., 2010 [42]). При этом скорость всасывания самого солевого раствора с относительно низкой концентрацией данного электролита (50 мМоль/л) не имеет критичных отличий от составов с более высоким содержанием натрия (102 мМоль/л) (Von Duvillard S.P. et al. [43]). Выявленная закономерность служит основанием для создания сбалансированных УЭР, 1 л которых содержит ориентировочно 0,5 г иона натрия, что не несет риска повышения артериального давления.

Можно отметить, что одним из представителей новой генерации спортивных напитков с пониженным содержанием как углеводной, так и электролитной составляющих являлся официальный напиток Олимпиады-2014.

Сочетанное потребление углеводов, перенос которых обеспечивается независимыми транспортными системами, потенциально значимо для повышения активности процесса оксидации экзогенных углеводов во время выполнения нагрузок, а также после их окончания (т. е. в ранний восстановительный период – первые 2 ч) (Curell K., Jeukendrup A.E., 2008 [44]). Как известно, трансмембранный перенос глюкозы обеспечивает лимитированное количество инсулинзависимых протеинов GLUT1 и уже упоминавшихся GLUT4 (в основном в скелетной мускулатуре), а также натрий-зависимых молекул SGLT1; транспорт фруктозы – это GLUT5. Таким образом, целесообразно включение в состав напитков глюкозы и фруктозы в ориентировочном соотношении 2:1.

Поскольку гидратационный статус любого спортсмена (и футболиста в частности) рассматривается как индивидуально детерминированный (антропометрическими характеристиками, параметрами инструментального и лабораторного тестирования, пищевым поведением, социальным положением, конфессиональной и культурологической принадлежностью, а также целями и задачами текущего этапа годичного цикла подготовки) (Sawka M.N. et al., 2007 [45]), то на первый план выступает необходимость разработки стратегии регидратации. Это требует совместных усилий со стороны самого спортсмена, его тренера и врача команды.

Подобный подход должен базироваться на положениях Согласительных заявлений, принятых тренерским сообществом, с одной стороны, и профессиональными медицинскими ассоциациями – с другой. Регламентации различных аспектов процесса достижения и поддержания приемлемого водно-электролитного баланса посвящены следующие официальные заявления, которые обладают достаточным квалификационным уровнем доказательности (убедительности)[12]:

• Report of Science Committee on Food on composition and specification of food intended to meet the expenditure of intense muscular effort, especially for sportsmen (Adopted by the SCF on 22/6/2000, corrected by the SCF on 28/2/2001) [15].

(http://www.mattilsynet.no/mat_og_vann/spesialmat_ og_kost-tilskudd/sportsprodukter/report_of_the_scientific_committee_on_ food_ on_composition_and_specification_of_food_intended_ to_meet_ the_expenditure_of_intense_muscular_effort_especially_for_ sportsmen.2847/binary/Report%20of%20the%20Scientific%2 °Committee%20on%20Food%20on%20composition%20and% 20 specification%20of%20food%20intended%20to%20meet%20 the%20expenditure%20of%20intense%20mus-cular%20effort, %20especially%20for%20sportsmen)

• Casa D.J., Clarkson P.M. American College of Sports Medicine Roundtable on Hydration and Physical Activity: Consensus Statements. Curr Sport Med Rep 2005, 4:115–127 [46].

• Lopez R.M., Casa D.J., Hydration for Athletes: What coaches can do to keep their athletes healthy and performing their best. 2006 [47].

(http://www.wiaawi.org/Portals/0/PDF/Sports/Wrestling/hydration 4athletes.pdf)

• Sawka M.N., Burke L.M., Eichner E.R. et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007; 39:377–390 [45].