При изучении клеточных механизмов поведения широко используют простые нервные системы беспозвоночных. В докладе на материале брюхоногих моллюсков рассматривается вопрос о роли клеточной гетерогенности в механизме управления поведением.
Свойство гетерогенности присуще всем реальным нервным системам. Более того, любая локальная нейронная система, выполняющая функцию управления, гетерогенна, то есть образована качественно разными клетками, специфичность которых выражается в способности продуцировать секрет определенного химического состава.
Рассмотрим пример конкретного поведения – «реакцию пробуждения» моллюска (нашим объектом служила виноградная улитка, сравнимые данные имеются для других гастропод). Улитку, находящуюся в состоянии спячки или укрывающуюся в раковине вследствие защитного рефлекса, можно побудить к деятельности подходящим раздражением. При этом наблюдается интегрированная поведенческая реакция, в которой различимы отдельные компоненты: включение генератора локомоции; включение генератора ритмических пищедобывательных движений радулы и глотки;
расслабление ретракторов, втягивавших ногу и щупальца; активация секреции слизи, необходимой для ползания по субстрату; учащение сердцебиений и т. д. Важнейший и остававшийся до сих пор незамеченным результат исследования клеточных механизмов заключается в том, что все компоненты этого поведенческого ответа обязаны посредничеству одного и того же медиаторного вещества – серотонина (5-НТ). При этом 5-НТ, секретируемый специфическими нейронами, управляет своими клеточными мишенями как контактно, так и дистантно: эффект 5-НТ на нейронный генератор жевательной моторики описывается в понятиях синаптической передачи, но при действии на некоторые другие мишени 5-НТ выступает в роли нейрогормона.
Из анализа клеточных механизмов следует, что 5-НТ является здесь фактором, интегрирующим поведение. Эта интегративная функция не обязательно осуществляется на каком-то определенном уровне иерархической структуры нервной системы моллюска: она реализуется и на уровне нейроэффекторной передачи (как, например, в случае управления сердцебиениями), и на уровне командного нейрона (управление моторикой радулы), и т. д. Существенно, что отдельные системы, участвующие в выполнении рассматриваемого поведенческого акта, в том или ином звене обеспечены такими рецепторами 5-НТ, которые позволяют этим системам отвечать на 5-НТ синергично. Разнообразие клеточных рецепторов 5-НТ и специфическое распределение этих рецепторов служат, таким образом, тому, чтобы разные клетки и органы участвовали в целостном поведении согласованно.
По нашей интерпретации, адекватные стимулы, вызывающие «реакцию пробуждения», посредством сенсорных клеток активируют 5-НТергические нейроны, вслед за чем 5-НТ становится фактором, определяющим поведенческий ответ на раздражение. В эксперименте активацию 5-НТергических нейронов можно имитировать введением 5-НТ в полость тела улитки: экзогенный 5-НТ вызывает хорошо скоординированное поведение, подобное «реакции пробуждения».
Интеграцию поведения улитки серотонином мы склонны рассматривать как пример широко распространенного класса явлений. Имеются разные основания считать, что другие продукты нейронной секреции принимают аналогичное участие в механизме управления поведением в простых нервных системах беспозвоночных. Известная амбивалентность всех медиаторных веществ становится понятной в контексте рассматриваемого механизма интеграции: нейротрансмиттер, оказывающий только возбуждающее или только тормозящее действие на разные мишени, не был бы способен выполнять роль интегрирующего фактора.
Идеализируя, поведенческий репертуар можно представить как набор синергических паттернов, каждый из которых управляется специфическим медиаторным веществом (точнее, продуктом нейронной секреции, способным действовать и контактно и дистантно). Такое представление о функционировании идеальной нейронной системы можно выразить формулой: один медиатор – одна синергия. Тогда гетерогенность нейронной системы становится мерой разнообразия поведения.
Сказанное касается простых нервных систем беспозвоночных, но сходным образом можно оценивать значение клеточной гетерогенности для сложных нейронных образований, таких как мозг млекопитающего, где те же рассуждения приложимы к локальным блокам нейронов. Идеализированная таким способом локальная нейронная система (например, модуль коры головного мозга) функционирует паттернами активности, при этом разнообразие паттернов (т. е. возможных состояний системы) определяется химической гетерогенностью источников секреции (т. е. афферентных входов и собственных интернейронов).
Предлагаемая идеализация позволяет концептуализировать явление химического разнообразия нейронов и синапсов, на этой основе могут строиться теоретические модели гетерогенных нейронных систем.
Вкаждом локальном участке нервной ткани осуществляются быстрые, контактные взаимодействия между нейронами, традиционно описываемые в понятиях химического синапса. Изучение нейробиологической реальности на материале простых нервных систем позволяет переосмыслить основной постулат синаптической концепции – представление о синапсе как канале связи между нейронами. Концепцию анатомических (т. е. синаптических) каналов связи предлагается рассматривать как идеализацию, т. е. предельный, а не общий случай; в качестве противоположного теоретического предела выдвигается представление об идеальной бессинаптической системе, в которой избирательность контактных взаимодействий обеспечивается гетерохимичностью системы и химическими каналами связи. (Под идеализацией здесь подразумевается известный прием анализа, когда рассматривают теоретическую модель объекта, пренебрегая какими-то из его реальных свойств.)
Рассмотрим обе идеализации на примере системы из трех нейронов – А, Б и В, связанных таким образом, что система функционирует как трехфазный генератор (рис. 1). Нейрофизиологическая феноменология такого рода характерна для реальных нейронных систем (в частности, для нейрональных генераторов ритмической мышечной активности). Интерпретируя, как это принято, такие системы в понятиях синапса, им приписывают свойство анатомической упорядоченности, связывая так наз. постсинаптические потенциалы и упорядоченную нейронную активность с наличием специфических контактов, как это сделано на рис. 2. По синаптической модели, сферой действия медиатора является синаптическая щель – компартмент межклеточного пространства, входящий в состав анатомического канала связи, синапса. Эта особенность модели позволяет пренебрегать разнообразием медиаторов: для функционирования рассматриваемой (рис. 2) и любой другой, сколь угодно сложной, нейронной системы необходим и достаточен один медиатор. В самом деле, при описании нейронных систем знаниями о химизме нейронов принято пренебрегать как несущественными.
Рис. 1
Рис. 2.
где д – деполяризующее окончание, г – гиперполяризующее окончание
Предположим теперь, что система лишена специфических контактов:
вся поверхность каждого из трех нейронов наделена одинаковыми секреторными и рецепторными свойствами, отростки контактируют случайным образом, переплетаясь в общем, не разделенном на компартменты, внеклеточном жидком матриксе. Сможет ли такая бессинаптическая система по-прежнему функционировать так, как показано на рис. 1? Сможет – при условии, что каждый из трех нейронов выделяет собственный медиатор и имеет нужный тип рецепторов к медиаторам двух других нейронов.
Если медиаторы клеток А, Б и В обозначим как а, б и в; рецепторы к а, обеспечивающие де- и гиперполяризацию, как соответственно Рда и Рга и т. п., то эту гетерохимическую нейронную систему можно записать следующим образом:
Такая запись содержит столь же полные сведения о специфических связях, обеспечивающих фазировку активности нейронов рассматриваемой системы, как и рис. 2, но содержание этих двух записей существенно различно. Бессинаптическая модель, в отличие от синаптической, составлена из качественно разнородных клеточных элементов (и в этом смысле подобна реальным нейронным системам, которые всегда гетерогенны); это усложнение сопряжено с такими преимуществами, как простота конструкции (неструктурированный, анатомически не упорядоченный нейропиль, плексус и т. п.) и простота управления (медиатор выполняет роль фактора, интегрирующего систему в целом). Интегративную функцию медиаторных веществ, присущую бессинаптической модели, трудно продемонстрировать на высших животных, в мозге которых эта функция может быть разной в разных участках нервной ткани. Вместе с тем у просто организованных животных эта функция может иметь специфическое выражение на поведенческом уровне. Действительно, интеграция поведения медиаторными веществами показана нами и другими авторами для ряда беспозвоночных. Эти данные указывают на близость реальных нервных систем (по крайней мере, у беспозвоночных) к бессинаптической модели.
Нервная система в целом и даже любая локальная нейронная система всегда гетерохимична, т. е. построена из нервных клеток, продуцирующих разные медиаторы. Статья посвящена модели, перспективной для изучения механизмов, посредством которых нейроны, различающиеся по своему медиаторному химизму, объединяются в систему.
О состоянии управляющей системы легче всего судить по конечному результату ее деятельности – поведению животного. В этом отношении удобны просто устроенные нервные системы беспозвоночных, у которых во многих случаях определенным поведением управляют определенные ганглии. Такой ганглий можно в первом приближении принять за локальную нейронную систему. Ганглии беспозвоночных всегда гетерохимичны и у многих форм построены из относительно небольшого числа идентифицируемых нейронов, что делает возможным дальнейший анализ клеточных механизмов наблюдаемого поведения.
Этими преимуществами обладает объект данного исследования – крылоногий моллюск Clione limacinа L. (Pteropoda), у которого, как будет показано ниже, четко представлено явление интеграции поведения индивидуальным медиаторным веществом. <…> Ранее одним из нас было показано, что у <…> клиона, или морского ангела, ритмические машущие движения локомоторных органов – крыльев, или параподиев, управляются автоматическим моторным центром, расположенным в педальных ганглиях, и сохраняются в препарате, состоящем только из крыла и педального ганглия [8]. <…> Свои поиски в этом направлении мы начали с анализа роли двух нейрональных аминов— дофамина и серотонина – в управлении поведением клиона. <…> Представлялось естественным в качестве первой задачи выяснить роль этих медиаторных аминов в поведении, связанном с реальным плаванием. Мы использовали не только сами медиаторы, но и их метаболические предшественники, а также некоторые другие нужные для анализа вещества. Предварительные результаты данной работы были коротко опубликованы ранее [3, 4].
<…> В относительно простом моторном поведении клиона различимы фоновое плавание и его изменения, вызываемые определенными стимулами или возникающие спонтанно и выражающиеся либо в угнетении, либо в активации плавания. <…> При фоновом плавании клион благодаря ритмическим движениям крыльев держится вертикально в том или ином слое воды или медленно перемещается, преимущественно в вертикальном направлении. <…> Угнетение локомоции наблюдается при тактильном раздражении передней части тела – головы, тактильных щупалец, крыльев, рудиментарной ноги <…>. При этом происходит отведение раздражаемого участка и кратковременная, длящаяся несколько секунд остановка крыльев, вследствие чего клион опускается в нижние слои воды. Такое поведение <…> регулярно наблюдается при соприкосновении тактильных щупалец плавающего клиона с поверхностной пленкой. <…> Фоновое плавание активируется при охоте и при нанесении тактильного раздражения на заднюю часть тела; в обоих случаях частота взмахов увеличивается в 1,5–2 раза и животные начинают перемещаться в направлениях, отличных от вертикального. <…> Естественным стимулом, вызывающим активацию плавания при охоте, является контакт головы клиона с жертвой, при этом резкое увеличение локомоторной активности сопровождается изгибанием туловища, благодаря чему моллюск плавает кругами, и выбрасыванием трех пар ловчих щупалец, которые при фоновом плавании втянуты в особые головные карманы. По наблюдениям Н. П. Вагнера [2], стремительные горизонтальные перемещения клионов имеют место при охоте за жертвой и в природных условиях. Активация плавания при тактильном раздражении хвоста – типичное проявление поведения, называемого активным избеганием. Нередко у клионов наблюдаются спонтанные эпизоды активированного плавания.
Таким образом, угнетение и активация плавания возникают у клиона спонтанно или в ответ на специфические стимулы; во втором случае эти изменения локомоторного поведения являются составной частью защитного (пассивное и активное избегание) или пищевого поведения. <…>
Рассмотрение полученных результатов начнем с констатации факта, представляющегося наиболее важным: медиаторное вещество, будучи введенным в организм моллюска, оказывает согласованное действие на разные эффекторы, что выражается хорошо скоординированным целостным поведенческим ответом животного.
Такой ответ представляет собой составную часть нормального поведенческого репертуара клиона: этот активный пелагический хищник может находиться и в пассивном состоянии, которое мы получаем у него инъекцией дофамина, и в состоянии охоты за жертвой, для получения которого нужно инъецировать серотонин.
<…> Каковы взаимоотношения между двумя исследованными механизмами интеграции поведения – дофаминергическим и серотонинергическим? (Мы сознаем, что управление поведением включает множество других медиаторных интеграций, но для их обсуждения пока нет материалов.)
Проще всего было бы представить, что каждый из двух механизмов действует независимо от другого, вызывая специфический ответ системы, исходно не находящейся под контролем этих двух биогенных аминов. Иначе говоря, рабочую гипотезу можно было бы сформулировать примерно так: фоновое поведение определяется только эндогенными свойствами управляющей системы, но при сенсорной или спонтанной активации соответствующих входов происходит секреция дофамина или серотонина и вызванное этой секрецией изменение поведения.
Принятию этой гипотезы препятствуют некоторые наблюдения. Во-первых, отчетливый сдвиг поведения происходит только при усилении синтеза какого-то из двух медиаторов. Во-вторых, выраженный поведенческий эффект дает блокада рецепторов, при этом, блокируя рецепторы дофамина, мы выявляем серотонин-зависимые поведенческие эффекты. Охота, вызванная эргометрином или метилэргометрином, особенно демонстративна в этом отношении.
Факты заставляют думать, что поведение моллюска в каждый момент определяется балансом двух медиаторов – соотношением между тем, как дофамин активирует свои, а серотонин свои рецепторы. При этом, как выяснилось выше, эндогенному медиатору доступны те же мишени, которые доступны медиатору, введенному извне, т. е. все клеточные мишени, обладающие рецепторами к данному медиатору. Чтобы удовлетворять этим условиям,
О проекте
О подписке