Обучение с учителем очень похоже на традиционный аналитический метод регрессионного анализа, который используется в модели оценки. Цель регрессионного анализа заключается в том, чтобы создать модель, предсказывающую известный результат, используя набор входных переменных с известными значениями, которые могут быть связаны с этим результатом. Когда модель разработана, ее можно использовать для предсказания неизвестного результата на основе известных значений тех же входных переменных. Например, можно разработать регрессионную модель, предсказывающую вероятность заболевания диабетом в зависимости от возраста пациента, уровня его физической активности, количества потребляемых калорий и индекса массы тела. При разработке этой модели мы будем ориентироваться на пациентов, которые уже заболели или не заболели диабетом, используя все доступные данные для построения регрессионной модели. Обнаружив хорошую предсказательную регрессионную модель, мы сможем использовать ее на новом наборе данных, чтобы предсказать неизвестный результат – вероятность заболевания диабетом в зависимости от определенных значений входных переменных. Это называется скорингом (как в регрессионном анализе, так и в машинном обучении).
Регрессионный процесс напоминает машинное обучение с учителем, но имеет ряд особенностей:
● В машинном обучении данные, используемые для разработки (тренировки) модели, называются тренировочными данными и могут представлять собой подмножество данных, необходимых исключительно для тренировки системы.
● В машинном обучении тренировочная модель часто утверждается при помощи другого подмножества данных, для которого известен подлежащий предсказанию результат.
● В регрессионном анализе может и не возникнуть желание использовать модель для предсказания неизвестных результатов, тогда как в машинном обучении наличие этого желания подразумевается.
● В машинном обучении может использоваться множество различных алгоритмов, которые не ограничиваются простым регрессионным анализом.
Модели обучения без учителя, как правило, более сложны в разработке. Они распознают закономерности в данных, которые не маркированы заранее и для которых неизвестен результат. Третий способ обучения, обучение с подкреплением, предполагает, что система машинного обучения имеет определенную цель и каждое продвижение к этой цели вознаграждается. Такой способ весьма полезен в играх, однако он также требует огромного объема данных (и из-за этого порой теряет практичность)[15]. Важно отметить, что модели машинного обучения с учителем обычно не учатся непрерывно: они учатся на основе набора тренировочных данных, а затем продолжают использовать ту же модель, если только не задействуется новый набор тренировочных данных, на основе которого обучаются новые модели.
Модели машинного обучения опираются на статистику. Оценить их растущую ценность можно в сравнении с традиционной аналитикой. Как правило, они точнее традиционных «кустарных» аналитических моделей, основанных на человеческих предположениях и регрессионном анализе, но при этом они сложнее и хуже поддаются интерпретации. Автоматизированные модели машинного обучения могут создаваться намного быстрее и описывать более детализированные наборы данных, чем в случае с традиционным статистическим анализом. При наличии необходимого объема данных для обучения модели глубокого обучения очень хорошо справляются с такими задачами, как распознавание изображений и голоса. Они работают гораздо лучше, чем ранние автоматизированные системы для решения этих задач, а в некоторых сферах их возможности уже сравнимы с человеческими или даже превосходят их.
С 1950-х гг. перед исследователями ИИ стояла цель научить машину распознавать язык человека. В эту сферу, называемую обработкой естественного языка, входят такие варианты использования технологий, как распознавание речи, текстовый анализ, перевод, генерация текста и решение других языковых задач. ОЕЯ использовали 53 % компаний, участвовавших в опросе об осведомленности о когнитивных технологиях. Есть два основных подхода к ОЕЯ – статистический и семантический. Статистическая ОЕЯ основана на машинном обучении и сегодня совершенствуется быстрее семантической. Она требует большого корпуса, или совокупности, текстов, на которых учится. Например, для перевода требуется большой объем переведенных текстов, статистически анализируя которые система узнает, что испанское и португальское слово amor находится в тесной статистической взаимосвязи с английским словом love. Этот метод использует «грубую силу», однако часто он довольно эффективен.
До последнего десятилетия внимание уделялось исключительно семантической ОЕЯ, и она демонстрирует умеренную эффективность, если система удачно натренирована на распознавание слов, синтаксиса и концептуальных связей. Однако обучение языку и инженерия знаний (которая часто предполагает создание графа знаний в определенной области) требуют много времени и сил. Для этого необходима разработка онтологий или моделей отношений между словами и фразами. Хотя создавать семантические модели ОЕЯ нелегко, сегодня этим занимаются несколько систем интеллектуальных агентов.
Производительность систем ОЕЯ следует измерять двумя способами. Первый – оценивать процент произнесенных слов, которые система понимает. Этот показатель возрастает при использовании технологии глубокого обучения и часто превышает 95 %. Второй способ – проверять, на какое количество различных типов вопросов система в состоянии ответить, а также сколько задач она может решить. Как правило, для этого необходима семантическая ОЕЯ, а поскольку в этой сфере нет серьезных технических прорывов, системы, которые отвечают на вопросы или решают конкретные задачи, контекстно обусловлены и требуют тренировки. Компьютер IBM Watson прекрасно справился с ответами на вопросы Jeopardy! но не сможет отвечать на вопросы Wheel of Fortune, если его не тренировать, а эти тренировки часто весьма трудоемки. Возможно, в будущем для ответов на вопросы будет применяться метод глубокого обучения, однако пока этого еще не делали.
В 1980-х гг. экспертные системы на основе наборов правил «если – то» были доминирующей технологией ИИ и долгое время широко использовались в коммерческих целях. Сегодня их обычно не считают последним словом техники, но проведенный в 2017 г. опрос Deloitte об осведомленности о когнитивных технологиях показал, что их по-прежнему используют 49 % американских компаний, работающих с ИИ.
Экспертные системы требуют, чтобы эксперты и инженеры знаний разработали набор правил для конкретной области знаний. Они широко распространены, к примеру, в страховом андеррайтинге и банковском кредитном андеррайтинге, но также используются в нетрадиционных областях вроде обжарки кофе в Folgers или приготовлении супов в Campbell's. Они неплохо работают и просты для понимания. Однако, если количество правил велико (обычно больше нескольких сотен) и правила начинают конфликтовать друг с другом, системы не справляются с задачами. Кроме того, если меняется область знаний, приходится менять и все правила, а это сложно и трудоемко.
Системы на основе правил не слишком усовершенствовались с момента своего раннего расцвета, но представители активно применяющих их отраслей (вроде страхования и банковского дела) надеются, что вскоре появится новое поколение технологий на основе правил. Исследователи и поставщики технологий уже обсуждают возможность создания «адаптивных машин обработки правил», которые будут постоянно модифицировать правила на основе новых данных, или комбинаций машин обработки правил с машинным обучением (но все это пока не получило широкого распространения).
Физическими роботами сегодня никого не удивить, ведь каждый год по всему миру внедряется более 200 000 промышленных роботов. В том или ином качестве физических роботов используют 32 % компаний, руководители которых приняли участие в опросе об осведомленности о когнитивных технологиях. На заводах и складах роботы выполняют такие задачи, как подъем и перемещение грузов, а также сварка и сборка объектов. Ранее они управлялись детализированными компьютерными программами, которые позволяли им выполнять конкретные задачи, но в последнее время роботы более тесно сотрудничают с людьми, а обучать их стало легче, поскольку можно просто пройти с ними весь цикл необходимой задачи. Они также становятся более интеллектуальными по мере того, как в их «мозг» (то есть в операционную систему) встраиваются другие возможности ИИ. Кажется весьма вероятным, что со временем интеллект физических роботов будет улучшен так же, как интеллект других систем.
Эта технология выполняет структурированные цифровые задачи (то есть задачи, связанные с информационными системами) так, как если бы их выполнял человек, следующий сценарию или правилам. Не все согласны, что РАП принадлежит к семейству технологий ИИ и когнитивных технологий, поскольку она не слишком интеллектуальна. Однако системы РАП популярны и автоматизированы, а их интеллектуальность растет, поэтому я включаю их в мир ИИ. Иногда их называют цифровой рабочей силой. В сравнении с другими формами ИИ они не слишком дороги и просты в программировании. При этом их работа прозрачна. Если вы умеете пользоваться мышкой, понимаете графические модели технологических процессов и готовы создать несколько бизнес-правил «если – то», вы в состоянии разобраться в этой технологии и, возможно, даже разработать РАП. Настраивать и внедрять такие системы также гораздо проще, чем разрабатывать собственные программы, используя язык программирования.
РАП не задействует роботов – только компьютерные программы на серверах. Опираясь на сочетание рабочего процесса, бизнес-правил и интеграции «уровня представления» с информационными системами, она функционирует как полуинтеллектуальный пользователь этих систем. Порой РАП сравнивают с макрокомандами электронных таблиц, но я считаю такое сравнение некорректным, поскольку РАП может справляться с гораздо более сложными задачами. Ее также сравнивают с инструментами управления бизнес-процессами, которые могут управлять рабочим процессом, но на самом деле технология была создана для того, чтобы документировать и анализировать процесс, а не автоматизировать его[16].
Некоторые системы РАП уже в определенной степени наделены интеллектом. Они могут «наблюдать» за тем, как работают их коллеги-люди (например, как они отвечают на частые вопросы клиентов), и имитировать их действия. Другие сравнивают процесс автоматизации с машинным зрением. Как и физические роботы, системы РАП постепенно становятся более интеллектуальными, а для управления их поведением начинают использоваться другие типы технологий ИИ.
Я описал эти технологии по отдельности, но все чаще они объединяются и интегрируются. Однако сегодня человеку, принимающему бизнес-решения, очень важно знать, какие технологии какие задачи выполняют. Директор по информационным технологиям Global Inc. Кришна Натан отмечает, что в 2018 г. один из ключевых приоритетов его компании – «помочь акционерам понять, на что способен и не способен ИИ, чтобы использовать его должным образом»[17]. Возможно, в будущем эти технологии окажутся так тесно переплетены, что необходимость в таком понимании исчезнет, а возможно, технологии вообще станут неотделимы друг от друга.
О проекте
О подписке