Несмотря на несколько десятилетий чередования «зим» и «весен» ИИ, когда интерес к исследованиям ИИ снижался, а затем повышался вновь, сегодня ИИ в моде. Его принимают крупные организации, такие как Центр Андерсона, банк DBS и Amazon. Технологические стартапы в Кремниевой долине и по всему миру, а также компании, оказывающие профессиональные услуги, считают, что ИИ станет – или уже стал – следующим важным этапом развития отрасли. В эту область вкладывают деньги венчурные компании. Никогда еще пресса так внимательно не следила за развитием технологий и не раздувала вокруг них такой ажиотаж.
Само собой, я согласен, что отчасти это возбуждение оправданно. Когда технология ИИ соответствует задаче, а проблема не настолько сложна, как в случае с лечением рака, сбором огромной базы банковских знаний об инвестировании или управлением флотом дронов без участия пилотов-людей, успех не заставляет себя ждать. Однако искусственный интеллект не изменит работу организаций (или жизнь людей) так быстро, как многие полагают. Он станет одной из многих технологий, подчиняющихся закону Амары (который носит имя ученого и футуролога Роя Амары):
Мы склонны переоценивать влияние технологий в краткосрочной перспективе и недооценивать их влияние в долгосрочной перспективе[9].
В краткосрочной перспективе ИИ поспособствует эволюционным изменениям, а в долгосрочной перспективе его влияние, скорее всего, окажется революционным.
ИИ действительно имеет большую ценность для бизнеса, но по большей части эта ценность не слишком привлекательна и не очень заметна. Благодаря ИИ продукты и процессы станут несколько лучше и проще в использовании. Решения будут более обоснованны. Мы продолжим прогрессировать в сфере данных и аналитики и, возможно, даже несколько ускорим замечательные темпы этого прогресса, наблюдавшиеся в последние пару десятилетий. Но все, кто обратился к технологиям ИИ на ранних этапах, уже заметили, что нам по-прежнему сложно создавать системы, которые думают и общаются как люди – даже в специализированных областях. Это особенно верно по части относительно новых и сложных технологий ИИ, как показал пример использования IBM Watson в Центре Андерсона и банке DBS.
Хотя ИИ очевидно открывает много источников потенциальной ценности для бизнеса, возникает вопрос, насколько заметными в организациях будут технологии ИИ и преимущества от их использования. Эти технологии могут привести как к радикальной трансформации бизнеса в результате осуществления нескольких проектов зондирования, так и оказать значительное, но по большей части незаметное влияние на процессы. Думаю, второй вариант несколько более вероятен. Не забывайте, что полету на Луну предшествовало множество других, менее амбициозных космических миссий. В 2014 г. специалист по прогнозированию развития технологий Кевин Келли написал, что он видит в ИИ «дешевую, надежную интеллектуальную технологию промышленного уровня, которая лежит в основе всех процессов, но почти никак не проявляет себя, пока неожиданно не прекращает работать». Келли сравнил ИИ с электричеством и заметил: «Нет почти ничего, что нельзя было бы обновить, изменить и улучшить, наделив дополнительным интеллектом… Как и все практичные вещи, ИИ будет в высшей степени скучным, даже трансформируя интернет, мировую экономику и цивилизацию»[10].
Не только Amazon, но и другие солидные организации могут найти любопытные и весьма смелые способы применения технологий ИИ. Но этих способов, скорее всего, окажется не так уж много, а появляться они будут редко. Весьма велика вероятность, что зондирование ничего не даст. Однако существует множество прозаичных возможностей для использования ИИ, которые достаточно ценны, чтобы сделать когнитивные технологии достойными внимания.
Не стоит сомневаться, что ИИ заслуживает внимания организаций, но им необходимо экспериментировать с технологией и накопить достаточный опыт, чтобы использовать ее эффективным образом. Некоторые из ранних проектов уже потерпели неудачу, а при осуществлении других возникли серьезные трудности, поскольку ни технологии, ни применяющие их организации еще не были полностью готовы. Подобно тому, как самые умные инвесторы «богатеют медленно», компании должны переходить к использованию когнитивных технологий постепенно. В сфере искусственного интеллекта преуспеют предприятия и организации, которые будут постоянно инвестировать в ИИ, не станут обращать внимания на ажиотаж вокруг него, сумеют приспособить ИИ для решения конкретных бизнес-задач и будут ориентироваться на долгосрочную перспективу. В настоящей книге объясняется, как компаниям взять соответствующий курс.
Однако я также утверждаю, что в этой области опасно сидеть сложа руки или двигаться слишком медленно. Почти каждый день я общаюсь с представителями крупных компаний, которые уже осознали силу этой технологии. Позже я упомяну большинство опрошенных руководителей этих уважаемых организаций, которые считают, что когнитивные технологии преобразуют как их внутренние процессы, так и предлагаемые ими продукты и услуги. Скорее всего, эти компании и руководители станут вашими конкурентами, поэтому было бы глупо не начать наращивать возможности ИИ сегодня же.
Само собой, другую серьезную угрозу представляют прорывные стартапы. Как я уже заметил, активнее всего ИИ внедряют такие онлайн-гиганты, как Google, Amazon и Facebook. Мы наблюдаем, как эти ориентированные на данные компании входят в различные отрасли и бросают вызов традиционным лидерам. Так, Google нашла применение своим обширным картографическим данным и мастерству в сфере ИИ, в результате став крупным игроком в отрасли беспилотных транспортных средств.
Вероятно, в определенных секторах также появятся стартапы, которые будут ориентироваться на ИИ в качестве ключевого компонента своих бизнес-моделей. Взять хотя бы отрасль страхования имущества и ответственности, где работает множество уважаемых американских компаний, включая State Farm, Allstate, Geico, Progressive и других. Некоторые из этих компаний, например Progressive, сильны в традиционной аналитике данных, но пока неясно, начала ли хоть одна из них активно внедрять в свою деятельность технологии ИИ.
Однако конкуренцию этим уважаемым игрокам все чаще составляют стартапы вроде нью-йоркской компании Lemonade, которая сделала ИИ основой своего бизнеса. Генеральный директор и соучредитель Lemonade Дэниел Шрайбер написал в своем блоге:
В последние годы отрасль страхования уделяла огромное внимание технологическим стартапам. Они замечают, как цифровая трансформация преобразует пользовательский опыт, привлекает более молодых потребителей и способствует сокращению затрат, одновременно все ускоряя. Все это правда, но это только первое действие… Пока все восхищаются развиваемыми на этом этапе технологиями, замечательные приложения генерируют массу данных. Вскоре они накопят миллиарды записей, после машинной обработки которых и начнется второе действие… Первое действие демонстрирует способность технологии трансформировать любой бизнес путем снижения затрат, повышения скорости и удовлетворения запросов потребителей. Однако, когда начнется второе действие, мы увидим, что ИИ способен трансформировать сферу страхования уникальным образом. Его воздействие не будет ограничиваться повышением удовлетворенности клиентов и ростом производительности – он позволит оценивать риски так точно, как никогда ранее. И этот день близок[11].
Конечно же, уважаемые компании в сфере страхования имущества и ответственности не спешат уступать дорогу конкурентам. Крупная японская страховая компания Sompo Holdings (где я работаю советником) развивает технологии ИИ в нескольких направлениях (хотя стартапы вроде Lemonade пока не столь опасны в Японии). Sompo Holdings одной из первых начала эксперимент с применением интеллектуального агента IBM Watson в сфере обслуживания клиентов. Он создает прогностические модели, используя технологию автоматизированного машинного обучения. При помощи ИИ он извлекает ключевые данные из запросов на страхование бизнеса, а также моделирует метеорологические данные с применением технологий машинного обучения. Генеральный директор Sompo Кенго Сакурада и директор компании по информационным технологиям Коити Нарасаки прекрасно знают, что ИИ способен преобразовать их бизнес, и полны решимости активно исследовать технологию.
Вообще говоря, ИИ и когнитивные технологии используют возможности, которыми ранее обладали только люди (а именно знание, понимание и восприятие), для решения узко определенных (при текущем состоянии технологий) задач. Как правило, это задачи, с которыми быстро справляется любой человек, – идентификация изображений или трактовка смысла предложений. Когда-то решение этих задач было под силу только человеческому мозгу (поэтому они и входят в категорию когнитивных). Немногие сегодня готовы спорить с этим громким определением, хотя не утихают дискуссии о том, насколько близко ИИ подошел к дублированию структур и функций мозга (на мой взгляд, он еще достаточно далек от этого).
Однако важно понимать, что в повседневном применении терминов «искусственный интеллект» и «когнитивные технологии» наблюдается значительная неопределенность. Кое-кто включает в спектр в высокой степени статистические технологии вроде машинного обучения, хотя машинное обучение имеет больше общего с традиционной аналитикой, чем с другими формами ИИ. Некоторые из тех, кто считает машинное обучение искусственно интеллектуальным, даже предпочитают этот термин термину «искусственный интеллект». Кое-кто включает в сферу ИИ технологию роботизированной автоматизации процессов (RPA), которая пока не демонстрировала особой интеллектуальности. Я намереваюсь использовать термин «искусственный интеллект» в самом широком смысле, отчасти потому, что мир, похоже, склоняется именно к этому, а отчасти потому, что все технологии, претендующие на звание искусственного интеллекта, со временем действительно становятся более интеллектуальными.
На основании этого можно сделать вывод о существовании еще одной сложности в использовании ИИ на предприятиях: дело в том, что технологий ИИ достаточно много и большинство из них можно применять несколькими способами, приспосабливая для выполнения различных функций. Комбинации технологий и функций достаточно сложны – настолько, что исследователь ИИ Крис Хэммонд даже предложил «периодическую систему» ИИ[12]. Далее приведена таблица, в которой перечисляются семь ключевых технологий, дается краткое описание каждой из них, а также называются сферы их применения и типичные функции.
Я также опишу, насколько распространена каждая из технологий в мире бизнеса. Я работаю со многими компаниями и прежде всего являюсь профессором в бизнес-школе, но также занимаю должность старшего советника по стратегии и аналитике в Deloitte, что предполагает оказание консалтинговых услуг по вопросам искусственного интеллекта. В 2017 г. я помог подготовить и проанализировать опрос, в котором приняли участие 250 американских работников руководящего звена, осведомленных о когнитивных технологиях, то есть работающих в организациях, активно использующих такие технологии, и понимающих принципы их применения. В первую очередь участников опроса спрашивали, какие технологии используются в их компаниях.
Ниже приведена таблица, в которой подробнее описывается каждая из технологий и сфера ее применения.
Машинное обучение – это техника автоматической подгонки моделей к данным и «обучения» посредством тренировки моделей данными. Машинное обучение представляет собой одну из самых распространенных форм ИИ: в проведенном в 2017 г. опросе Deloitte 58 % из 250 «осведомленных о когнитивных технологиях» руководителей, компании которых уже внедряли ИИ, ответили, что в их бизнесе используется машинное обучение. Эта техника лежит в основе многих решений в сфере искусственного интеллекта и имеет множество вариантов. Резкий рост объемов данных внутри компаний и – особенно – за их пределами сделал возможным и необходимым применение машинного обучения для осмысления всей этой информации.
Более сложную форму машинного обучения представляет собой нейронная сеть – доступная с 1960-х гг. технология, которая используется для категоризации, например для выявления мошенничества в сфере кредитных операций. Она рассматривает каждую задачу как совокупность входящих и исходящих данных, а также переменных или «функций» различного веса, которые связывают входящие данные с исходящими. Работа этой технологии напоминает процесс обработки сигналов нейронами мозга, но аналогия с мозгом не слишком удачна.
Наиболее сложные формы машинного обучения предполагают глубокое обучение, или построение моделей нейронных сетей, имеющих множество уровней функций и переменных, предсказывающих результаты. В таких моделях могут быть тысячи функций, которые обеспечиваются более быстрой работой современных компьютерных архитектур. В отличие от более ранних форм статистического анализа, каждая функция модели глубокого обучения, как правило, мало что значит для человека. В связи с этим модели очень трудно или невозможно интерпретировать. В опросе Deloitte 34 % компаний использовали технологии глубокого обучения.
Модели глубокого обучения прогнозируют и классифицируют результаты с применением техники обратного распространения ошибки[13]. Именно эта технология ИИ стоит за целым рядом недавних прорывов – от победы над человеком при игре в го до классификации изображений в интернете. Отцом глубокого обучения часто называют Джеффри Хинтона из Университета Торонто и компании Google – и отчасти как раз из-за ранней работы над техникой обратного распространения ошибки.
В машинном обучении задействуется более сотни возможных алгоритмов, и большинство из них весьма причудливы. Спектр этих алгоритмов весьма широк и охватывает все – от повышения градиента (метода построения моделей, которые устраняют ошибки предыдущих моделей, тем самым повышая их способность к прогнозированию и классификации) до случайных лесов (моделей, которые представляют собой ансамбль моделей дерева принятия решений). Все чаще программное обеспечение (включая DataRobot, SAS и AutoML от Google) позволяет автоматизировать построение моделей машинного обучения, в ходе которого происходит апробация различных алгоритмов с целью выявить наиболее удачный[14]. Как только обнаруживается лучшая модель для прогнозирования или классификации тренировочных данных, ее используют для прогнозирования и классификации новых данных (иногда это называют скорингом).
Однако важен не только используемый алгоритм, но и принцип обучения создаваемых моделей. Модели обучения с учителем (на сегодняшний день наиболее распространенные в бизнесе) учатся на основе набора тренировочных данных с маркированным результатом. Например, модель машинного обучения, которая пытается предсказать мошенничество в банке, необходимо учить на системе, где мошенничество в некоторых случаях было однозначно установлено. Это непросто, поскольку частота мошенничества может составлять 1 случай на 100 000, и порой эту проблему называют проблемой несбалансированности классов.
О проекте
О подписке