Читать книгу «Товароведение однородных групп продовольственных товаров» онлайн полностью📖 — Коллектива авторов — MyBook.
image






В состав жиров могут входить насыщенные (предельные) жирные кислоты (лауриновая, миристиновая, пальмитиновая, стеариновая и др.) и ненасыщенные (непредельные) жирные кислоты (олеиновая, линолевая, линоленовая, арахидоновая и др.), имеющие в молекуле двойные связи. Ненасыщенные жирные кислоты имеют более низкую температуру плавления и проявляют более высокую реакционную способность по сравнению с насыщенными кислотами. Физические и химические свойства жиров зависят от их жирнокислотного состава.

Жиры, содержащие предельные жирные кислоты с большой молекулярной массой, имеют высокую температуру плавления и твердую консистенцию (tпл.бараньего жира = 44–50 °C).

Большинство растительных жиров, а также некоторые животные жиры (например, жиры морских животных и рыб) отличаются высоким содержанием непредельных жирных кислот, соответственно, имеют низкую температуру плавления и жидкую консистенцию при температуре, близкой к 0 °C и ниже (tпл.подсолн. масла = –21 °C). Усвояемость жиров прежде всего зависит от их температуры плавления: чем она выше, тем жир труднее усваивается в организме.

Жиры нерастворимы в воде, но могут образовывать с ней эмульсии в присутствии эмульгаторов (производство маргарина, майонеза).

Жиры растворяются в органических растворителях (бензине, хлороформе, петролейном эфире и др.). На этом свойстве основаны экстракционный способ получения растительных масел, а также методика определения массовой доли жиров в составе пищевых продуктов.

Жидкие жиры могут превращаться в твердые в результате насыщения водородом непредельных жирных кислот. Этот процесс происходит в жестких условиях (при температуре 200–220 °C, в присутствии никелевого катализатора) и называется гидрогенизацией жиров. Получаемые гидрожиры, или саломасы, являются основным сырьем при производстве маргарина, кулинарных, кондитерских и хлебопекарных жиров.

При хранении снижение качества жиров происходит в результате их гидролиза и окисления.

Гидролиз жиров является первоначальной стадией их порчи. Под действием ферментов липаз в присутствии воды жиры расщепляются на глицерин и свободные жирные кислоты, которые подвергаются в дальнейшем окислительной порче. Для многих жиросодержащих продуктов в стандартах установлен показатель качества – кислотное число, указывающее на степень свежести жира.

Окислению подвергаются прежде всего ненасыщенные жирные кислоты, входящие в состав жиров, они присоединяют кислород по месту разрыва двойной связи. Накапливающиеся токсичные продукты окисления – пероксиды и гидропероксиды (на начальной стадии), альдегиды, кетоны, оксикислоты (при глубоком окислении) – придают жирам неприятный прогорклый запах, резкий “царапающий” вкус. Реакция ускоряется с повышением температуры, под воздействием световой энергии, в присутствии влаги и металлов переменной валентности. Замедляют окислительные процессы антиоксиданты (антиокислители), которые можно подразделить на природные (токоферолы, многие фенольные вещества, витамин С и др.) и синтетические (ионол, бутилоксианизол – БОА, бутилокситолуол – БОТ, пропилгаллаты и др.). Для предупреждения окислительной порчи жиров жиросодержащие продукты следует хранить в герметичной упаковке при пониженной температуре, избегая воздействия прямых солнечных лучей.

Кроме типичных жиров в состав пищевых продуктов входят жироподобные соединения (липоиды), имеющие более сложное строение, – фосфолипиды (лецитины, кефалины), стерины (холестерин, эргостерол и др.), воски. Фосфолипиды являются основными компонентами клеточных мембран и обеспечивают их полупроницаемость. Холестерин входит в состав стероидных гормонов и желчных кислот. Эргостерол под действием ультрафиолетовых лучей в организме превращается в витамин D. Воски растительного и животного происхождения выполняют защитные функции. Лецитин широко используется в пищевой промышленности в качестве эмульгатора (при производстве шоколада, маргарина, мороженого).

Углеводы образуются в процессе фотосинтеза в зеленых листьях растений из углекислого газа воздуха и воды. На их долю приходится до 90 % сухих веществ растений и около 2 % сухих веществ животного организма. По объему потребления и обеспечению калорийности пищевого рациона они занимают первое место среди других компонентов пищи. Кроме энергетической углеводы выполняют и другие функции в организме: входят в состав важнейших клеточных структур (нуклеиновых кислот, антител, гормонов, ферментов), участвуют в регуляции многих биохимических процессов. В то же время избыточное поступление углеводов приводит к ожирению, нарушениям нервной системы, аллергизации организма.

Основным источником углеводов являются продукты растительного происхождения. Среди них есть такие, которые почти полностью состоят из одних углеводов – сахар, мед, крахмал.

В некоторых продуктах на долю углеводов приходится основная часть сухих веществ – мука, крупа, кондитерские изделия, плоды и овощи.

Согласно принятой классификации, углеводы подразделяют на три больших класса: моносахариды – простые сахара (глюкоза, фруктоза, галактоза, ксилоза, арабиноза и др.); олигосахариды – содержат от двух до десяти моносахаридных остатков (дисахариды – сахароза, мальтоза, лактоза и др., трисахарид – раффиноза, тетрасахарид – стахиоза и др.); полисахариды – продукты поликонденсации моносахаридов (крахмал, гликоген, пектиновые вещества, целлюлоза (или клетчатка), гемицеллюлозы, инулин, камеди и др.).

По усвояемости в организме углеводы делятся на усваиваемые (моно-, олигосахариды, крахмал и продукты его распада – декстрины, гликоген) и неусваиваемые (клетчатка, гемицеллюлозы, пектиновые вещества). Главными усваиваемыми углеводами являются крахмал и сахароза. На долю крахмала приходится около 80 % всех потребляемых человеком углеводов. Источниками крахмала являются крупы, макаронные и мучные изделия, картофель, другие овощи и плоды. Неусваиваемые углеводы называют также пищевыми волокнами или балластными веществами. Они выполняют важную физиологическую функцию – вызывают перистальтику кишечника, обеспечивая тем самым продвижение пищи по желудочно-кишечному тракту.

Углеводы играют важную роль в формировании и сохранении качества продовольственных товаров. Некоторые свойства (превращения) углеводов используют в технологии производства и хранения пищевых продуктов:

• гидролиз (расщепление при участии воды) крахмала лежит в основе производства крахмалопродуктов (глюкозы, патоки, сахарных сиропов), спирта (при подготовке сырья для брожения), пива (при получении пивного сусла), хлеба (процесс приготовления теста) и других продуктов; гидролиз пектиновых веществ происходит при созревании и дозревании плодов и овощей; гидролиз сахарозы с образованием инвертного сахара используется в кондитерской промышленности, при производстве безалкогольных напитков;

• реакция карамелизации сахаров, происходящая при нагревании свыше 160 °C и сопровождающаяся образованием коричнево окрашенных веществ с карамельным ароматом, используется при производстве сахарного колера (натуральный краситель, применяемый для подкрашивания безалкогольных напитков, коньяков), происходит при выпечке хлеба, обжаривании кофейных зерен, при приготовлении жареного мяса, рыбы и других продуктов;

• реакция меланоидинообразования (реакция Майяра) – реакция взаимодействия карбонильных групп восстанавливающих сахаров с аминогруппами белков, аминокислот, сопровождающаяся накоплением темноокрашенных веществ (меланоидинов) и летучих ароматических соединений, – происходит при хлебопечении, сушке солода, длительной термической обработке молока (цвет топленого молока, ряженки);

• способность моносахаридов к сбраживанию под воздействием микроорганизмов (дрожжей, молочнокислых бактерий и др.) лежит в основе технологии изготовления хлеба, кисломолочных продуктов, сыров, пива, вина, кваса и других продуктов;

• гидрофильность – способность к связыванию воды – обусловливает высокую гигроскопичность многих углеводов, лежащую в основе нежелательных изменений качества при хранении сыпучих пищевых продуктов (муки, крупы, крахмала, сахара, соли и др.) – потере их сыпучести, комкованию, слеживанию;

• способность крахмальных зерен к набуханию в холодной воде и образованию крахмального клейстера в горячей используется в пищевом производстве и обеспечивает кулинарнотехнологические свойства некоторых пищевых продуктов (муки, крупяных и макаронных изделий); при старении крахмальных зерен теряется их способность к удерживанию влаги (после длительного хранения ухудшается развариваемость крупяных изделий, снижаются хлебопекарные достоинства муки).

Витамины являются биорегуляторами различных процессов, протекающих в живом организме. Для нормальной жизнедеятельности человека они необходимы в небольших количествах.

Общая суточная потребность организма в различных витаминах составляет 0,1–0,2 г. Большинство витаминов не синтезируется человеческим организмом, поэтому они должны поступать вместе с пищей. По растворимости витамины классифицируют на две группы: жирорастворимые и водорастворимые. Характеристика наиболее важных витаминов и витаминоподобных веществ приведена в табл. 1.3.


Таблица 1.3

Характеристика основных витаминов и витаминоподобных веществ



Ферменты – это биологические катализаторы белковой природы, ускоряющие протекание различных биохимических реакций. Собственные эндогенные ферменты пищевых продуктов могут оказывать как положительное, так и отрицательное влияние на их качество. Например, благоприятное воздействие ферментативных процессов наблюдается при созревании муки, рыбы и мяса при посоле, при дозревании плодов и овощей, получении солода, черного байхового чая. Глубокие ферментативные процессы приводят к порче пищевых продуктов (автолитическая порча мяса, мацерация – разрушение тканей – плодов и овощей, скисание пива и т. д.). Для продления сроков хранения пищевых продуктов используют различные методы консервирования, снижающие активность эндогенных ферментов.

В пищевой промышленности широко используют ферментные препараты – в хлебопечении, пивоварении, при производстве крахмалопродуктов, спирта, плодово-ягодных соков, вин, мучных кондитерских изделий, сычужных сыров. Ферментативные методы анализа применяют при исследовании качества пищевых продуктов.

Органические кислоты придают кислый вкус пищевым продуктам, участвуют в формировании аромата (летучие кислоты), используются в пищевой промышленности в качестве консервантов (уксусная, сорбиновая, бензойная кислоты). Помимо аминокислот и жирных кислот, входящих соответственно в состав белков и жиров, наиболее распространенными являются яблочная, лимонная, винная, молочная, уксусная, щавелевая, муравьиная, хинная, янтарная, фумаровая, бензойная и сорбиновая кислоты.

Общее содержание кислот в составе пищевых продуктов варьирует от 0,1 % (картофель, многие овощи) до 6 % (лимоны). При хранении продуктов содержание кислот, как правило, увеличивается и часто приводит к их порче: прокисанию молока, пива, уксуснокислому скисанию вин, соков и т. д. Для многих продовольственных товаров (молока, кисломолочных продуктов, пива, виноградных вин, хлеба и др.) в перечень физико-химических показателей качества входят: кислотность, титруемая кислотность, летучая кислотность, активная кислотность (рН).

Фенольные соединения содержатся преимущественно в продуктах растительного происхождения: плодах и овощах, чае, кофе, шоколаде, винах, коньяках и др. Многим продуктам они придают терпкий, вяжущий вкус, участвуют в формировании их цвета и аромата. Фенольные соединения относят к физиологически активным веществам: они обладают бактерицидными свойствами, проявляют Р-витаминную активность, являются сильными антиоксидантами.

Эта группа соединений включает фенолкарбоновые кислоты (гидроксибензойную, галловую, ванилиновую, сиреневую, коричную, кумаровую и др.), кумарины и их производные, флавонолы (кверцетин, мирицетин и др.), антоцианы и лейкоантоцианы, катехины, танины, или дубильные вещества (являются продуктами полимеризации катехинов и лейкоантоцианов).

Фенольные соединения имеют следующие свойства:

• при взаимодействии с белками образуют нерастворимые соединения (свойство используется при осветлении соков, вин);

• при окислении дают коричневоокрашенные продукты (при сушке и консервировании плоды и овощи бланшируют горячим паром или окуривают диоксидом серы для инактивации ферментов, катализирующих этот процесс);

• разрушаются при замораживании (снижается терпкость при замораживании плодов и овощей).

Красящие вещества , входящие в состав пищевых продуктов, можно подразделить на натуральные и синтетические красители. К натуральным относятся собственные эндогенные красящие вещества пищевых продуктов: хлорофиллы – пигменты зеленого цвета (цвет листовой зелени, огурцов, оливкового масла и др.), каротиноиды – пигменты желтого, оранжевого и красного цвета (цвет моркови, красного перца, яичного желтка и др.), флавоноиды – пигменты желто-коричневого цвета (цвет репчатого лука, чая и др.), антоцианы – пигменты красного и синего цвета (цвет кожицы красного винограда, черной смородины, кизила и др.) и другие пигменты. Выделенные из природных источников красители используют в пищевой промышленности для подкрашивания разных пищевых продуктов. Натуральные красители являются нестойкими соединениями – они чувствительны к нагреванию, действию кислорода воздуха, кислот, щелочей, микроорганизмов, поэтому изменение цвета пищевых продуктов при хранении является первым признаком их порчи. Для повышения стойкости естественной окраски пищевых продуктов используются соответствующие пищевые добавки – стабилизаторы и фиксаторы цвета (окраски).

Перечень синтетических красителей, разрешенных к применению в Российской Федерации при производстве пищевых продуктов, регламентируют Санитарно-эпидемиологические правила и нормативы СанПиН 2.3.2.1293-03 “Гигиенические требования по применению пищевых добавок”. Запрещены к применению в Российской Федерации при производстве пищевых продуктов красители: цитрусовый красный 2 (Е121), амарант (Е123) и красный 2G (E128).

В состав ароматических веществ пищевого продукта входят ароматические компоненты сырья, вещества, образовавшиеся в процессе технологии изготовления (при термической обработке, сушке и т. д.) и при хранении продукта, а также специально внесенные пищевые ароматизаторы. Так, в состав ароматических веществ жареного кофе входит 370 различных соединений, земляники – 256, хлеба – 174, коньяка – 128, мяса птицы – 189.

Обычно одно или несколько соединений определяют основной аромат пищевого продукта, остальные – участвуют в образовании различных “тонов”. Основной аромат лимонам придает цитраль, ванили – ванилин, чесноку – аллилсульфид, тмину – карвон. По химической природе ароматические вещества относятся к разным классам соединений: терпеноидам, спиртам, летучим кислотам, простым и сложным эфирам.

Пищевые ароматизаторы – это сложные композиции душистых веществ натурального, идентичного натуральному или искусственного происхождения. В их состав могут входить до 20–30 и более компонентов различной химической природы.

При длительном хранении пищевых продуктов их запах (аромат) претерпевает существенные изменения за счет улетучивания собственных ароматических веществ и поглощения (сорбции) запахов из окружающего пространства. Для предотвращения этих нежелательных изменений используют герметичную упаковку.

Качественный состав и количественное соотношение веществ, содержащихся в пищевых продуктах, обусловливает их пищевую ценность, безопасность и сохраняемость.