«Наука о данных» читать онлайн книгу 📙 автора Брендана Тирни на MyBook.ru
image
Наука о данных

Отсканируйте код для установки мобильного приложения MyBook

Премиум

4.6 
(43 оценки)

Наука о данных

175 печатных страниц

2020 год

12+

По подписке
549 руб.

Доступ ко всем книгам и аудиокнигам от 1 месяца

Первые 14 дней бесплатно
Оцените книгу
О книге

Сегодня наука о данных используется практически во всех сферах: вы видите подобранные специально для вас рекламные объявления, рекомендованные на основе ваших предпочтений фильмы и книги, ссылки на предполагаемых друзей в соцсетях, отфильтрованные письма в папке со спамом.

Книга знакомит с основами науки о данных. В ней охватываются все ключевые аспекты, начиная с истории развития сбора и анализа данных и заканчивая этическими проблемами, связанными с конфиденциальностью информации. Авторы объясняют, как работают нейронные сети и машинное обучение, приводят примеры анализа бизнес-проблем и того, как их можно решить, рассказывают о сферах, на которые наука о данных окажет наибольшее влияние в будущем.

«Наука о данных» уже переведена на японский, корейский и китайский языки.

читайте онлайн полную версию книги «Наука о данных» автора Брендан Тирни на сайте электронной библиотеки MyBook.ru. Скачивайте приложения для iOS или Android и читайте «Наука о данных» где угодно даже без интернета. 

Подробная информация
Дата написания: 1 января 2018Объем: 316387
Год издания: 2020Дата поступления: 1 апреля 2020
ISBN (EAN): 9785961433784
Переводчик: Михаил Белоголовский
Правообладатель
1 892 книги

Поделиться

Метод наименьших квадратов послужил основой для статистических методов обучения, таких как линейная регрессия и логистическая регрессия, а также для разработки моделей нейронных сетей искусственного интеллекта
5 февраля 2022

Поделиться

Большие данные также привели к появлению новых платформ для их обработки. При работе с большими объемами информации на высоких скоростях может быть полезным с точки зрения вычислений и поддержания скорости распределять данные по нескольким серверам, затем обрабатывать запросы, вычисляя их результаты по частям на каждом из серверов, а затем объединять их в сгенерированный ответ. Такой подход использован в модели MapReduce на платформе Hadoop. В этой модели данные и запросы отображаются на нескольких серверах (распределяются между ними), а затем рассчитанные на них частичные результаты объединяются
5 февраля 2022

Поделиться

Они имеют более простую модель, чем привычные реляционные базы данных, и хранят данные в виде объектов с атрибутами, используя язык представления объектов, такой как JavaScript Object Notation (JSON).
1 декабря 2021

Поделиться

Переводчик

Другие книги переводчика

Подборки с этой книгой