Читать книгу «Алгоритмы для жизни: Простые способы принимать верные решения» онлайн полностью📖 — Брайана Кристиана — MyBook.

Когда продавать

Если мы изменим еще пару аспектов классической «проблемы секретаря», это перенесет нас из области знакомств и свиданий в сферу недвижимости. Ранее мы уже рассматривали процесс поиска съемной квартиры в качестве проблемы оптимальной остановки, но владение домом также не испытывает недостатка в оптимальной остановке.

Допустим, вы продаете дом. После консультаций с несколькими агентами по недвижимости вы выставляете его на продажу, освежаете слой краски на стенах, приводите в порядок лужайку и начинаете ждать предложений. Получив очередное предложение о покупке, вы, как правило, должны решить, принять ли его или отклонить. Но за отклоненные предложения приходится в итоге расплачиваться – еще одним еженедельным (или ежемесячным) платежом по ипотеке, пока вы ожидаете следующего предложения, вовсе не будучи уверенными в том, что оно будет выгоднее предыдущего.

Продажа дома похожа на игру с полной информацией. Мы знаем объективную долларовую стоимость всех предложений, которая позволяет нам не просто определить, какие из них выгоднее, но и понять, насколько они выгоднее. Более того, у нас есть довольно обширные сведения о состоянии рынка, что позволяет нам хотя бы приблизительно спрогнозировать диапазон цен в ожидаемых предложениях. (Это дает нам такую же информацию о перцентилях каждого предложения, какую мы рассматривали в примере с тестом на скорость печатания.) Однако наша цель уже не в том, чтобы выбрать наилучшее предложение, но в том, чтобы выручить как можно больше денег в рамках всей процедуры продажи в целом. Учитывая, что каждый день ожидания измеряется в долларах, есть смысл принять хорошее предложение прямо сейчас, а не ждать чуть более выгодного еще несколько месяцев.

Располагая данной информацией, мы можем не назначать примерный ценовой диапазон. Вместо этого мы установим четкий порог, будем игнорировать все, что ниже его, и примем то предложение, которое его превысит. Правда, если мы стеснены в средствах и они закончатся, если мы не продадим дом за определенный срок либо мы ожидаем получить весьма ограниченное число предложений и не особо заинтересованы в результате, то нам стоит снизить планку, так как подобный подход ограничивает. (Вот почему покупатели обычно ищут «мотивированных» продавцов домов.) Но если проблемы не загоняют нас в угол, мы можем просто сосредоточиться на анализе затрат и выгод игры в ожидание.

Сейчас мы разберем один из простейших случаев: мы точно знаем ценовой диапазон ожидаемых предложений, и все предложения в данном диапазоне равновероятны. Если нам нет нужды волноваться о том, что предложения (или наши сбережения) подойдут к концу, то мы можем сосредоточиться исключительно на расчетах, что мы приобретем или потеряем, если будем ждать более выгодной сделки. Если мы отклоним нынешнее предложение, то сможет ли вероятность более выгодного предложения, умноженная на ожидаемую нами разницу в выгоде, компенсировать связанные с ожиданием расходы? Как выясняется, математика здесь довольно проста, и мы видим прямую зависимость стоп-цены от цены ожидания следующего предложения.

Этот математический расчет не будет волновать нас, если мы продаем многомиллионный особняк или полуразвалившийся сарай. В этом случае будет иметь значение только небольшая разница между самой низкой и самой высокой ценой, которую нам, вероятно, предложат. Если мы введем конкретные цифры, то увидим, что данный алгоритм предлагает нам множество четких указаний. Допустим, ценовой диапазон ожидаемых нами предложений варьируется от $400 000 до $500 000. Если цена ожидания незначительна, мы можем быть почти бесконечно разборчивы. Если цена ожидания следующего предложения составляет всего $1, то мы получим максимальную выгоду, всего лишь дождавшись покупателя, который предложит нам за дом $499 572,99 и ни центом меньше. Если ожидание обойдется нам в $2000 за предложение, придется дотянуть до $480 000. В условиях медленного роста рынка, где ожидание будет стоить $10 000, нам придется принять любое предложение, которое превысит $455 279. Ну и наконец, если цена ожидания составит половину или даже больше от ожидаемого нами диапазона предложений (в данном примере это $50 000), то нет абсолютно никакого смысла тянуть дальше и нужно приложить максимум усилий, чтобы продать дом первому, кто назовет свою цену, и покончить с этим. Нищим выбирать не приходится.


В данном примере важно отметить, что устанавливаемый нами предел зависит только лишь от стоимости поисков. Поскольку вероятность того, что следующее предложение окажется лучше предыдущего (а также стоимость выяснения этого) никогда не изменится, то нам нет смысла снижать стоп-цену, так как поиски продолжаются и не зависят от нашей удачливости. Мы устанавливаем ее однажды, прежде чем выставить дом на продажу, и в дальнейшем ориентируемся на нее.

Специалист по оптимизации Висконсинского университета в Мэдисоне Лора Альберт Маклей воспользовалась своими знаниями проблем оптимальной остановки, когда пришло время продавать ее собственный дом. «Первое же полученное нами предложение было замечательным, – рассказывает она, – но оно предполагало огромные затраты с нашей стороны, потому что покупатели просили нас съехать на месяц раньше, чем мы были к этому готовы. Было еще одно конкурентоспособное предложение… [но] мы держались, пока не получили подходящее нам». Многих продавцов необходимость отклонить парочку выгодных предложений весьма нервирует, особенно если последующие предложения уступают им в выгоде. Но Маклей твердо стояла на своем и сохраняла спокойствие. «Это было бы очень, очень тяжело, – признается она, – если бы я не знала, что математика на моей стороне».

Данный принцип применим к любой ситуации, где вам предстоит получить ряд предложений и заплатить за то, чтобы искать дальше или ждать следующего. Следовательно, это относится к случаям, которые выходят далеко за рамки продажи недвижимости. Например, экономисты, пользуясь этим алгоритмом, моделируют процесс поиска людьми работы и наглядно объясняют кажущийся на первый взгляд парадоксальным факт одновременного существования на рынке вакансий и безработных.

На самом деле, у этих вариаций проблемы оптимальной остановки есть еще одно поистине удивительное свойство. Как мы помним, возможность вернуть упущенный в прошлом шанс была жизненно важной в любовных поисках Кеплера. Но в случае с продажей дома или поисками работы вам никогда, ни в коем случае не следует так поступать, даже если есть возможность вернуться вновь к ранее отклоненному предложению и даже если это предложение все еще не утратило своей актуальности. Если оно не превышало ваш пороговый показатель на тот момент, оно не превысит его и сейчас. То, что вы заплатили за возможность продолжить поиски, – это невозвратные издержки. Не идите на уступки, не жалейте ни о чем. И никогда не оглядывайтесь.

Когда парковаться

Я пришел к выводу, что три главные административные проблемы в кампусе – это секс у студентов, спорт у выпускников и парковка у всего преподавательского состава.

Кларк Керр, президент Калифорнийского университета в Беркли (1958–1967)

Еще одна сфера, где в избытке имеется проблема оптимальной остановки и где бессмысленно сожалеть об упущенном шансе, – это все, связанное с автомобилем. Автомобилисты уже фигурировали в упомянутой нами проблеме секретаря, а современный стиль жизни, побуждающий постоянно двигаться вперед, превращает каждую поездку на машине еще и в проблему остановки: поиски ресторана; поиски туалета и, что наиболее остро для городских водителей, поиски парковочного места.

Кто лучше расскажет обо всех тонкостях парковки, чем заслуженный профессор Калифорнийского университета в Лос-Анджелесе по градопланированию Дональд Шоуп, которого Los Angeles Times назвала рок-звездой парковки? Мы ехали к нему на встречу из Северной Калифорнии, заверив Шоупа, что оставили в запасе достаточно времени для непредвиденных проблем с трафиком. «Что до планирования непредвиденных проблем с трафиком, я думаю, что стоит планировать предвиденные проблемы», – парировал он. Шоуп прославился благодаря своей книге «Высокая цена бесплатной парковки», в которой он во многом внес ясность в процесс, который на самом деле имеет место, когда мы движемся из пункта А в пункт Б.

Бедного водителя стоит пожалеть! Идеальное парковочное место, в понимании Шоупа, – то, в котором умело соблюден точный баланс между стоимостью места парковки, неудобством от ходьбы пешком, временем, затраченным на поиски свободного пространства (сильно различается в зависимости от района, времени суток и т. д.), и сожженным за все это время бензином. Условия уравнения меняются с количеством пассажиров в автомобиле, которые могут разделить между собой плату за парковку, но не временем, потраченным на поиски места или на то, чтобы дойти пешком от места парковки до нужного пункта. Водитель должен учитывать, что пространство с наибольшим количеством свободных парковочных мест будет пользоваться наибольшим спросом. Поиски парковки всегда включают в себя элемент теории игр: пока вы пытаетесь перехитрить всех водителей на дороге, они, в свою очередь, пытаются перехитрить вас[5]. Таким образом, большинство проблем с парковкой сводится к одному фактору – уровню заполненности. Это отношение общего числа парковочных мест к количеству занятых в данный момент. Если уровень заполненности низкий, то можно без проблем найти хорошее место. Если же он высок, то поиск хоть какого-нибудь места, где можно было бы оставить машину, становится поистине сложной задачей.

Шоуп утверждает, что проблемы с парковкой возникли вследствие политики городских властей, которая привела к невероятно высокому уровню заполненности. Если плата за парковку в определенных районах слишком низкая (или – о ужас! – парковка и вовсе бесплатная), то большинство автолюбителей будет стремиться припарковаться именно там, а не чуть подальше, откуда придется немного пройти пешком. Таким образом, каждый старается встать там, но все места оказываются заняты, и люди в конечном счете тратят уйму времени и бензина, кружа по району в поисках парковочного места.

Решение Шоупа предполагает установку цифровых паркоматов, способных корректировать стоимость парковки по мере возрастания спроса (такой проект сегодня реализуется в центре Сан-Франциско). Цены устанавливаются исходя из уровня заполненности, и, по версии Шоупа, этот показатель должен быть в районе 85 % – довольно большой отрыв от 100 % забитых тротуаров большинства крупных городов. Он отмечает, что заполненность, возрастающая с 90 до 95 %, означает всего лишь на 5 % больше машин, зато удваивает количество времени, затрачиваемого водителем каждой из них на поиски места.

Ключевой момент влияния уровня заполненности на стратегию парковки становится очевиден, стоит нам только признать, что процесс парковки – это и есть проблема оптимальной остановки в чистом виде! Каждый раз, когда вы, проезжая по улице, видите свободное парковочное место, вам нужно принять решение: припарковаться здесь или проехать чуть ближе к конечному пункту и попытать удачи там?

Представьте, что вы едете по бесконечно длинной дороге, парковочные места на которой расположены через равные промежутки, и ваша цель состоит в том, чтобы свести к минимуму расстояние, которое вам придется пройти пешком от машины до конечного пункта. В этом случае решением станет правило «семь раз отмерь, один раз отрежь». Водитель, желающий найти оптимальный вариант парковки, должен проехать мимо всех свободных мест, находящихся дальше определенного расстояния от пункта назначения, а затем остановить свой выбор на первом же месте, которое встретится ему после этой точки отсчета. А вот расстояние, на котором «отмерь» превращается в «отрежь», зависит уже от соотношения мест, которые, вероятно, окажутся заняты, с общим их количеством – тот самый уровень заполненности. В таблице ниже приводятся расстояния для нескольких типичных соотношений.


Если эта абстрактная бесконечная улица большого города имеет 99 %-ный уровень заполненности и всего 1 % свободных мест, то вам следует занять первое пустое место, которое попадется вам примерно за четверть мили до конечного пункта назначения (около 70 мест). Но если верить теории Шоупа, когда уровень занятости снизится до 85 %, вы можете не беспокоиться насчет парковки, пока вам не останется полквартала до места.

1
...