Цитаты из книги «Алгоритмы для жизни: Простые способы принимать верные решения» Брайана Кристиана📚 — лучшие афоризмы, высказывания и крылатые фразы — MyBook. Страница 13
Чтобы глубже разобраться в данной ситуации, мы побеседовали с Амноном Рапопортом, профессором Калифорнийского университета в Риверсайде, который более 40 лет проводил эксперименты по оптимальной остановке.
10 июля 2018

Поделиться

Сейчас мы разберем один из простейших случаев: мы точно знаем ценовой диапазон ожидаемых предложений, и все предложения в данном диапазоне равновероятны. Если нам нет нужды волноваться о том, что предложения (или наши сбережения) подойдут к концу, то мы можем сосредоточиться исключительно на расчетах, что мы приобретем или потеряем, если будем ждать более выгодной сделки. Если мы отклоним нынешнее предложение, то сможет ли вероятность более выгодного предложения, умноженная на ожидаемую нами разницу в выгоде, компенсировать связанные с ожиданием расходы? Как выясняется, математика здесь довольно проста, и мы видим прямую зависимость стоп-цены от цены ожидания следующего предложения. Этот математический расчет не будет волновать нас, если мы продаем многомиллионный особняк или полуразвалившийся сарай. В этом случае будет иметь значение только небольшая разница между самой низкой и самой высокой ценой, которую нам, вероятно, предложат. Если мы введем конкретные цифры, то увидим, что данный алгоритм предлагает нам множество четких указаний. Допустим, ценовой диапазон ожидаемых нами предложений варьируется от $400 000 до $500 000. Если цена ожидания незначительна, мы можем быть почти бесконечно разборчивы. Если цена ожидания следующего предложения составляет всего $1, то мы получим максимальную выгоду, всего лишь дождавшись покупателя, который предложит нам за дом $499 572,99 и ни центом меньше. Если ожидание обойдется нам в $2000 за предложение, придется дотянуть до $480 000. В условиях медленного роста рынка, где ожидание будет стоить $10 000, нам придется принять любое предложение, которое превысит $455 279. Ну и наконец, если цена ожидания составит половину или даже больше от ожидаемого нами диапазона предложений (в данном примере это $50 000), то нет абсолютно никакого смысла тянуть дальше и нужно приложить максимум усилий, чтобы продать дом первому, кто назовет свою цену, и покончить с этим. Нищим выбирать не приходится.
10 июля 2018

Поделиться

Аналогичным образом вам следует выбрать третьего от конца соискателя, если он окажется выше 69-го перцентиля, четвертого от конца — если он будет выше 78-го, и т.д. (будучи тем избирательнее, чем больше соискателей еще осталось). Но, несмотря ни на что, никогда не берите на работу кандидата ниже среднего уровня, если только ваше положение не совсем уж безвыходное. (И, поскольку вы все еще заинтересованы в выборе наилучшего человека из подборки, не стоит нанимать того, кто не превосходит просмотренных вами до сих пор соискателей.) Шанс найти в итоге лучшего кандидата из всех возможных в этом варианте (при наличии полной информации) увеличивается до 58% — что, конечно, далеко не гарантия успеха, но это значительно лучше тех 37%, которые дает нам правило 37% в игре без информации. И если у вас есть все факты, вероятность добиться своей цели выше, даже когда число претендентов произвольно растет. Таким образом, игра с полной информацией приводит нас к неожиданному и, пожалуй, даже несколько странному заключению. Золотоискательство имеет гораздо больше шансов на успех, чем поиски любви. Если вы оцениваете своих потенциальных партнеров, основываясь на каком-либо объективном критерии (скажем, на перцентиле уровня их дохода), то вы получаете в свое распоряжение гораздо больше информации, чем в результате эфемерной эмоциональной реакции («любви»), которая требует как опыта, так и сравнительного анализа для принятия решения.
10 июля 2018

Поделиться

Математика показывает, что, когда в подборке остается еще много кандидатов, легко пройти мимо хорошего претендента в надежде найти кого-то еще лучше. Но по мере уменьшения шансов вы должны быть готовы нанять того, кто окажется просто чуть выше среднего уровня. Это всем знакомое, хотя и не слишком вдохновляющее явление: в случае скудного выбора нам приходится снижать требования. Так же верно и обратное: если в море полно рыбы, то планку требований можно поставить выше. Но в обоих случаях, что особенно важно, именно математика говорит насколько.
10 июля 2018

Поделиться

Допустим, наша подборка соискателей репрезентативна и никоим образом не искажена и была выбрана случайно. Более того, предположим, что скорость печатания — это единственный критерий, по которому мы отбираем кандидатов на должность. Тогда мы приходим к тому, что математики называют полной информацией, и ситуация меняется. «Чтобы установить стандарт, не нужно накапливать опыт, — говорится в основной статье по этой проблеме, написанной еще в 1966 году, — и удачный выбор порой делается мгновенно». Иными словами, если соискателю 95-го перцентиля случается стать первым, кого мы оцениваем, мы мгновенно понимаем, что с уверенностью можем принять его на работу — при условии, конечно, что мы не рассматриваем наличие соискателя 96-го перцентиля в подборке. И вот в чем загвоздка. Если опять же наша цель — найти наилучшего кандидата на должность, то нам по-прежнему необходимо взвесить вероятность существования более сильного претендента. Однако наличие у нас полной информации дает возможность вычислить эти шансы напрямую. Например, вероятность того, что следующий соискатель будет из 96-го перцентиля или выше, всегда будет 1 к 20. Таким образом, решение о том, когда следует прекратить поиски, сводится исключительно к тому, сколько еще кандидатов нам осталось просмотреть. Полная информация подразумевает, что нам не нужно так уж тщательно обдумывать свои действия. Вместо этого можно применить пороговое правило, руководствуясь которым мы можем немедленно принять на работу кандидата выше определенного уровня перцентиля. И нам не нужно просматривать первоначальную группу кандидатов, чтобы установить этот порог. Но стоит тем не менее учитывать, сколько еще соискателей остаются доступными.
10 июля 2018

Поделиться

существует еще один важный момент в задаче о секретаре, который заставляет задуматься. А именно: мы ровным счетом ничего не знаем о соискателях, кроме их сравнительных характеристик. У нас нет четкого представления о том, каким должен быть хороший или плохой соискатель. Более того, когда мы сравниваем двух кандидатов, мы видим, кто из них лучше, но не понимаем, насколько лучше. И, проходя через эту неизбежную фазу поиска, мы рискуем упустить отличного кандидата, пока не определимся со своими требованиями и ожиданиями. Математики называют эту сложность с оптимальной остановкой игрой в отсутствие информации.
10 июля 2018

Поделиться

по-прежнему остались одиноки, как было с Кеплером, то вернитесь к лучшему кандидату из прошлого. И даже в этом случае симметричность стратегии и результата сохраняется: при наличии возможности «войти в одну и ту же реку дважды» вероятность того, что вы остановите свой выбор на лучшем кандидате, снова составляет 61%.
10 июля 2018

Поделиться

Если вы можете вернуть предыдущих претендентов, то оптимальный алгоритм существенно преображает знакомое нам правило «семь раз отмерь, один раз отрежь»: вы дольше можете не связывать себя обязательствами, и у вас есть резервный план. Например, предположим, что своевременное предложение обречено на положительный ответ, при этом запоздалые предложения отвергают через раз. В этом случае математический расчет призывает нас продолжать поиски без каких бы то ни было обязательств до тех пор, пока вы не просмотрите 61% всех кандидатов, и затем выбрать из оставшихся 39% того, кто окажется лучшим для вас. Если, рассмотрев хорошенько все варианты, вы
10 июля 2018

Поделиться

На протяжении десятилетий, с момента появления задачи о секретаре, ученые рассматривали множество вариантов развития сценария и в итоге разработали новые стратегии оптимальной остановки в различных условиях. Возможность получения отказа, к примеру, может быть устранена простым математическим решением — необходимо предлагать рано и часто. Предположим, если ваши шансы быть отвергнутым составляют 50 на 50, тот же математический анализ, с помощью которого появилось правило тридцати семи процентов, предписывает нам начать делать предложения после первой четверти ваших поисков. В случае отказа продолжайте делать предложения каждому «лучшему на данный момент» человеку, которого встречаете, пока не получите положительный ответ. С такой стратегией общая вероятность вашего успеха, то есть получение согласия на ваше предложение от лучшего кандидата из имеющихся, составит 25%. Очевидно, это не такой уж и плохой расклад для сценария, в котором возможность получить отказ сочетается с общей сложностью определения прежде всего своих стандартов. Кеплер, в свою очередь, открыто ругал себя за «тревожность и нерешительность», которые заставили его продолжить поиски. «Неужели не было иного способа для моего смятенного сердца примириться с судьбой, — жаловался он своему близкому другу, — кроме как осознать невозможность исполнения других моих желаний?» В этом случае теория оптимальной остановки вновь приносит некоторое утешение. Беспокойство и нерешительность уже в меньшей степени служат признаками моральной или психологической деградации и оказываются частью успешной стратегии в тех сценариях, где второй шанс возможен.
10 июля 2018

Поделиться

Это плохая новость для тех, кто живет только поисками «того единственного (той единственной)». Но есть и положительный момент. Интуиция могла бы нам подсказать, что наши шансы на выбор лучшего кандидата будут неизменно уменьшаться при возрастании общего количества претендентов. Если бы мы искали наугад, выбирая, к примеру, из ста претендентов, у нас был бы лишь один шанс на успех. Из тысячи — 0,0001% шанса. Тем не менее удивительно, что математическая составляющая задачи неизменна. При оптимальной остановке ваш шанс выбрать лучшего кандидата из ста — 37%. И если выбирать из тысячи, то вероятность успеха по-прежнему 37%. Таким образом, чем больше становится число претендентов, тем бóльшую ценность для нас может представлять знание алгоритма. Действительно, в большинстве случаев вы вряд ли найдете потерянную иголку. Но оптимальная остановка, по крайней мере, защитит вас от ее поисков в стоге сена.
10 июля 2018

Поделиться

1
...
...
22