Ленивое обучение (Lazy learning) в искусственном интеллекте – это метод обучения, при котором обобщение данных обучения откладывается до тех пор, пока в систему не будет сделан запрос, в отличие от активного обучения, когда система пытается обобщить данные обучения до получения запросов. Этот тип обучения также известен как обучение на основе экземпляров. Ленивые классификаторы очень полезны при работе с большими наборами данных, которые имеют несколько атрибутов.
Лингвистическая аннотация (Linguistic annotation) – также известная как текстовая аннотация корпуса, – это маркировка языковых данных в текстовой или устной форме. Лингвистическая аннотация направлена на выявление и пометку грамматических, фонетических и семантических лингвистических элементов в тексте или аудиозаписи.
Линейная регрессия (Linear regression) – это метод моделирования, который помогает в построении отношений между зависимой скалярной переменной и одной или несколькими независимыми переменными. Они также известны как переменная результата и предикторная переменная. Хотя линейная регрессия уходит своими корнями в статистику, она также является важным инструментом машинного обучения для таких задач, как прогнозное моделирование. Линейная регрессия пытается смоделировать взаимосвязь между двумя переменными, подгоняя линейное уравнение к наблюдаемым данным.
Лисп (LISt Processing – «обработка списков») – это семейство языков программирования, основанных на представлении программы системой линейных списков символов, которые притом являются основной структурой данных языка. Лисп считается вторым после Fortran старейшим высокоуровневым языком программирования. [38]
Личная информация (Personally Identifiable Information) – это любая часть информации, которая может использоваться сама по себе или в сочетании с какой-либо другой информацией для идентификации конкретного человека.
Ловушка NaN (NaN trap) – это элемент числового типа данных, который можно интерпретировать как неопределенное или непредставимое значение, особенно в арифметике с плавающей запятой. Когда одно число в вашей модели становится NaN во время обучения, что приводит к тому, что многие или все другие числа в вашей модели в конечном тоже итоге становятся NaN. [39]
Логарифм отношения шансов (Log-odds) – это логарифм отношения вероятностей наступления и не наступления события. Log-odds – это краткий способ обозначения взятия натурального логарифма из шансов. Когда вы берете натуральный логарифм чего-то, вы в основном делаете его более нормально распределенным. Когда мы делаем что-то более нормально распределенное, мы ставим его в таком масштабе, с которым очень легко работать.
Логика описания (Description logic) – это семейство формальных языков представления знаний. DL используются в искусственном интеллекте для описания и обоснования соответствующих концепций предметной области (известных как терминологические знания). Это особенно важно для обеспечения логического формализма для онтологий и Semantic Web: Web Ontology Language (OWL). Наибольшее применение DL и OWL находит в биомедицинской информатике, где DL помогает в кодификации биомедицинских знаний.
Логика первого порядка (также известная как исчисление предикатов первого порядка и логика предикатов) (First-order logic) – это набор формальных систем, используемых в математике, философии, лингвистике и информатике. Логика первого порядка использует количественные переменные вместо нелогических объектов и допускает использование предложений, содержащих переменные, так что вместо таких утверждений, как Сократ – человек, могут быть выражения в форме «существует такое X, что X есть Сократ и X – человек», и существует квантор, а X – переменная. Это отличает ее от логики высказываний, которая не использует кванторы или отношения.
Логика по умолчанию (Default logic) – это немонотонная логика, предложенная Раймондом Рейтером для формализации рассуждений с предположениями по умолчанию. Логика по умолчанию может выражать такие факты, как «по умолчанию, что-то истинно».
Логика разделения (Separation logic) – расширение логики Хоара – это способ рассуждения о программах. Язык утверждений логики разделения является частным случаем логики сгруппированных импликаций (BI).
Логистическая регрессия (Logistic regression) – это статистический метод для анализа набора данных, в котором есть одна или несколько независимых переменных, которые определяют результат. Результат измеряется с помощью дихотомической переменной (в которой есть только два возможных результата). Она используется для прогнозирования двоичного результата (1/0, да / нет, истина / ложь) с учетом набора независимых переменных. Логистическую регрессию можно рассматривать как особый случай линейной регрессии, когда исходная переменная является категориальной, где мы используем логарифм шансов в качестве зависимой переменной. Проще говоря, он предсказывает вероятность возникновения события путем подгонки данных клогитфункции. В некоторых случаях зависимые переменные могут иметь более двух результатов, например, в браке / не замужем / в разводе, такие сценарии классифицируются как полиномиальная логистическая регрессия. [40]
Логистическая функция ошибки (также функция потерь логистической регрессии) (Log Loss) – Эту функцию называют также «логлосс» (logloss / log_loss), перекрёстной / кросс-энтропией. В большинстве обучающих сетей – это ошибка, которая рассчитывается как разница между фактическим выходным значением y и прогнозируемым выходным значением ŷ. Функция, используемая для вычисления этой ошибки, известна как функция потерь. [41]
Логит (Logits) – это функция, также известная как функция логарифмических шансов, – это функция, которая представляет значения вероятности от 0 до 1 и от отрицательной бесконечности до бесконечности. Эта функция обратна сигмовидной функции, которая ограничивает значения от 0 до 1 по оси Y, а не по оси X. Поскольку логит-функция существует в диапазоне от 0 до 1, эта функция чаще всего используется для понимания вероятностей используется аналогично сигмовидной функции в нейронных сетях. Сигмоидальная или активационная функция выдает вероятность, тогда как логит-функция принимает вероятность и выдает действительное число между отрицательной и положительной бесконечностью. Как и сигмовидная функция, логит-функции часто размещаются в качестве последнего слоя в нейронной сети, поскольку это может упростить данные. Например, логит-функция часто используется на последнем слое нейронной сети, используемой в задачах классификации. Поскольку сеть определяет вероятности для классификации, функция логита может преобразовывать эти вероятности в действительные числа.
Логит модель (Logit model) – это статистическая модель, используемая для предсказания вероятности возникновения интересующего нас события с помощью логистической функции [42].
Логит-функция (Logit Function) – это обратная сигмоидальная «логистическая» функция, используемая в математике, особенно в статистике.
Логическая запись (Logical record) – это все данные для данной единицы анализа. Он отличается от физической записи тем, что может потребоваться несколько физических записей для хранения всех данных для данной единицы анализа. Например, в данных изображения карты «карта» представляет собой физическую запись, и обычно требуется несколько «карт» для хранения всей информации для одного случая или единицы анализа.
Логическое программирование (Logic programming) – это парадигма программирования, которая основывается на формальной логике. Любая программа, написанная на логическом языке программирования, представляет собой набор предложений в логической форме, выражающий факты и правила о некоторой проблемной области. Также, – это тип парадигмы программирования, в которой вычисления выполняются на основе хранилища знаний фактов и правил; LISP и Prolog – два языка логического программирования, используемые для программирования AI.
Логическое программирование ограничений (Сonstraint logic programming) – это расширенная версия логического программирования, которая создается путем комбинирования ограниченного программирования с логическим программированием. Ограниченное программирование – это форма декларативного программирования, которая использует математические ограничения, чтобы определить, как переменные в программе связаны друг с другом.
Ложноотрицательный показатель (False negative rate) – это доля фактических положительных примеров, для которых прогнозируется отрицательный класс. Ложноотрицательный показатель равен отношению ложных отрицательных результатов к сумме ложных отрицательных и истинно положительных результатов.
Ложный отрицательный результат (False Negative) – это случай, в котором модель ошибочно определила отрицательный класс. Например, модель сделала вывод, что конкретное сообщение электронной почты не было спамом (отрицательный класс), но по факту оно действительно было спамом.
Ложный положительный результат (False Positive) – это случай, в котором модель ошибочно предсказала положительный класс. Например, модель сделала вывод, что конкретное сообщение электронной почты было спамом (положительный класс), но на самом деле это письмо являлось частью важной переписки. Частота ложных срабатываний (FPR) – ось X на кривой ROC.
Локальное устройство (Local device) – это устройства, входящие в сеть, которая покрывает относительно небольшую территорию или небольшую группу зданий.
Локальный сервер (Local server) – это хостинг, работающий при помощи программ, которые осуществляют его эмуляцию на личном компьютере.
Лямбда (Lambda) – это функция в программировании на Python, анонимная функция или функция без имени. Это небольшая и ограниченная функция, состоящая не более чем из одной строки. Как и обычная функция, лямбда-функция может иметь несколько аргументов в одном выражении. [43]
Маркер (Token) в языковой модели – это элементарная единица, на которой модель обучается и делает прогнозы.
Марковская модель (Markov model) — это статистическая модель, имитирующая работу процесса, похожего на марковский процесс с неизвестными параметрами, задачей которой является определение неизвестных параметров на основе наблюдаемых данных.
Марковские процессы принятия решений (MDP) (Markov decision process) – это стохастический процесс управления с дискретным временем. Он обеспечивает математическую основу для моделирования принятия решений в ситуациях, когда результаты частично случайны и частично находятся под контролем лица, принимающего решения. MDP полезны для изучения задач оптимизации, решаемых с помощью динамического программирования и обучения с подкреплением.
Марковский процесс (Markov process) – это случайный процесс, эволюция которого после любого заданного значения временного параметра t не зависит от эволюции, предшествовавшей t, при фиксированных параметрах процесса [44].
Марковское свойство (Markov property) – этот термин, относится к свойству случайного процесса без памяти. Назван в честь русского математика Андрея Маркова. [45]
Маска R-CNN (Mask R-CNN) – это свёрточная нейронная сеть (CNN), передовая технология сегментации изображений. Этот вариант глубокой нейронной сети обнаруживает объекты на изображении и создает высококачественную маску сегментации для каждого экземпляра. Используя Mask R-CNN можно автоматически сегментировать и создавать попиксельные маски для каждого объекта на изображении. Можно применять Mask R-CNN как к изображениям, так и к видеопотокам.
Маскированная языковая модель (Masked language model) – это языковая модель, которая предсказывает вероятность того, что токены-кандидаты заполнят пробелы в последовательности. Большинство современных моделей маскированного языка являются двунаправленными.
Масштабирование (Scaling) – это обычно используемая практика в разработке признаков, чтобы оптимизировать диапазон значений объекта, чтобы он соответствовал диапазону других объектов в наборе данных.
Масштабируемость (Scalability) – это способность системы, сети или процесса справляться с увеличением рабочей нагрузки (увеличивать свою производительность) при добавлении ресурсов (обычно аппаратных).
Математическая оптимизация (математическое программирование) (Mathematical optimization) – это выбор наилучшего элемента по некоторому критерию из некоторого набора доступных альтернатив. Это чрезвычайно мощная технология предписывающей аналитики, которая позволяет компаниям решать сложные бизнес-задачи и более эффективно использовать доступные ресурсы и данные
Матрица неточностей (Confusion matrix) – это таблица ситуационного анализа, в которой суммируются результаты прогнозирования модели классификации в машинном обучении. Записи в наборе данных сводятся в виде матрицы в соответствии с реальной категорией и оценкой классификации, сделанной моделью классификации.
Матрица элементов (Item matrix) — в рекомендательных системах – это матрица вложений, созданная матричной факторизацией, которая содержит скрытые сигналы о каждом элементе. Каждая строка матрицы элементов содержит значение одной скрытой функции для всех элементов. Матрица элементов имеет то же количество столбцов, что и целевая матрица, которая факторизуется. Например, если система рекомендаций по фильмам оценивает 10 000 названий фильмов, матрица элементов будет состоять из 10 000 столбцов.
Матричная факторизация (Matrix factorization) – это разложение одной матрицы на производные нескольких матриц. Существует множество различных способов факторизации матриц. Многие сложные матричные операции не могут быть решены эффективно или стабильно с использованием ограниченной точности компьютеров. Разложение матриц на составные части упрощает вычисление более сложных матричных операций.
Машина Больцмана (Boltzmann machine) – это вид стохастической рекуррентной нейронной сети, изобретенной Джеффри Хинтоном и Терри Сейновски. Машина Больцмана может рассматриваться как стохастический генеративний вариант сети Хопфилда. Эта модель оказалась первой нейронной сетью, способной обучаться внутренним репрезентациям, и может представлять и решать сложные комбинаторные задачи.
Машина опорных векторов (Support Vector Machine) – это популярная модель обучения с учителем, разработанная Владимиром Вапником и используемая как для классификации данных, так и для регрессии. Тем не менее, он обычно используется для задач классификации, построения гиперплоскости, где расстояние между двумя классами точек данных максимально. Эта гиперплоскость известна как граница решения, разделяющая классы точек данных по обе стороны от плоскости.
Машина повышения градиента (Gradient boost machine) – это тип метода машинного обучения, в котором используется ансамбль слабых моделей прогнозирования для выполнения задач регрессии и классификации.
Машина Тьюринга (Turing machine) – это математическая модель вычислений, определяющая абстрактную машину, которая манипулирует символами на полосе ленты в соответствии с таблицей правил. Несмотря на простоту модели, для любого компьютерного алгоритма можно построить машину Тьюринга, способную имитировать логику этого алгоритма.
Машинное восприятие (Machine perception) – это способность системы получать и интерпретировать данные из внешнего мира аналогично тому, как люди используют наши органы чувств. Обычно это делается с подключенным оборудованием, хотя можно использовать и программное обеспечение.
Машинное зрение (Machine Vision) – это применение общего набора методов, позволяющих компьютерам видеть, для промышленности и производства.
Машинное обучение (Machine Learning) – это область исследования, которая дает компьютерам возможность учиться без явного программирования [46,47]. Также под машинным обучением понимают технологии автоматического обучения алгоритмов искусственного интеллекта распознаванию и классификации на тестовых выборках объектов для повышения качества распознавания, обработки и анализа данных, прогнозирования [48]. Также машинное обучение определяют, как одно из направлений (подмножеств) искусственного интеллекта, благодаря которому воплощается ключевое свойство интеллектуальных компьютерных систем – самообучение на основе анализа и обработки больших разнородных данных. Чем больше объем информации и ее разнообразие, тем проще искусственному интеллекту найти закономерности и тем точнее будет получаемый результат.
Машинное обучение Microsoft Azure (платформа автоматизации искусственного интеллекта)
О проекте
О подписке