Набор данных DataFrame (DataFrame) – это проиндексированный многомерный массив значений для представления наборов данных в pandas. DataFrame аналогичен таблице. Каждый столбец DataFrame имеет имя (заголовок), а каждая строка идентифицируется номером.
Набор признаков (Feature set) – это группа признаков, на которых обучается модель машинного обучения. Например, почтовый индекс, размер собственности и состояние могут представлять собой простой набор признаков для модели, предсказывающей цены на жилье.
Наивная семантика (Naive semantics) – это подход, используемый в компьютерных науках для представления базовых знаний о конкретной области, и он использовался в таких приложениях, как представление значения предложений на естественном языке в приложениях искусственного интеллекта. В общем случае этот термин использовался для обозначения использования ограниченного хранилища общепонятных знаний о конкретной области в мире и применялся к таким областям, как проектирование схем данных, основанное на данных.
Наивный Байес (Naive Bayes) – это очень популярный и простой в машинном обучении алгоритм. Как следует из названия, этот алгоритм делает предположение, что все переменные в наборе данных «наивные», т.е. не коррелируют друг с другом. [61]
Наивный байесовский классификатор (Naive Bayes classifier) – это простой вероятностный классификатор, основанный на применении теоремы Байеса со строгими (наивными) предположениями о независимости.
Намерение (Intent) – это механизм для описания операции (выбрать фотографию, отправить письмо, сделать звонок, запустить браузер и перейти по указанному адресу), которую необходимо выполнить. Используется в обучающих данных для чат-ботов и других задач обработки естественного языка, в качестве типа метки, которая определяет цель сказанного.
Направленный ациклический граф (Directed acyclic graph, DAG) – это график, которые направлен и связывает остальные рёбра без циклов. Это значит, что невозможно преодолеть весь направленный граф, начав с одного ребра. Рёбра направленного графа идут только одним путём.
Направленный ациклический граф являет собой топологическую сортировку, где каждый нод находится в определённом порядке. Конструкция DAG состоит из вершин, соединяемых рёбрами. Основной алгоритм DAG называется топологическим распределением, это означает, что каждое ребро направлено от более раннего ребра к более позднему.
Наука о данных (Data Science) – это профессиональная деятельность, связанная с эффективным и максимально достоверным поиском закономерностей в данных, извлечение знаний из данных в обобщённой форме, а также их оформление в виде, пригодном для обработки заинтересованными сторонами (людьми, программными системами, управляющими устройствами) в целях принятия обоснованных решений. Также, – это процесс исследования, фильтрация, преобразование и моделирования данных с целью извлечения полезной информации и принятия решений.
Н-грамма (N-gram) – это просто последовательность из n элементов (звуков, слогов, слов или символов), идущих в каком-то тексте подряд. На практике чаще имеют в виду ряд слов (реже символов). Последовательность из двух элементов называют биграмма, из трёх элементов – триграмма [62].
Небольшие данные (Small data) – это данные, представляемые в таких объеме и формате для понимания человеком, в каких они становятся доступными, информативными и действенными.
Недетерминированные алгоритмы (Nondeterministic algorithm) – это алгоритмы, которые даже для одних и тех же входных данных могут демонстрировать различное поведение при разных прогонах, итерациях, выполнениях. Он тесно связан с недетерминированными машинами Тьюринга и классами сложности NP. Это алгоритм, результат которого не может быть заранее определен.
Недоумение (Perplexity) – это показатель того, насколько эффективно вероятностная модель может предсказывать выборку в контексте статистического измерения информации. Например, BLEU – это показатель сложности для моделей языкового перевода, который измеряет, насколько хорошо модель может переводить с одного языка на другой.
Независимо и одинаково распределенные (Independently and identically distributed i.i.d) – это набор случайных данных (величин, переменных) в котором каждая случайная величина имеет такое же распределение вероятностей, как и другие, и все они взаимно при этом независимы. Классический пример iid появляется во время игры с подбрасыванием монеты. Случайные переменные, которые представляют каждый результат бросков (0 для решки и 1 для решки), подчиняются одному и тому же закону Бернулли. Более того, поскольку броски являются последовательными, результаты не зависят друг от друга, и, следовательно, случайные величины независимы.
Нейрокибернетика (Neurocybernetics) – это научное направление, изучающее основные закономерности организации и функционирования нейронов и нейронных образований. Основным методом нейрокибернетики является математическое моделирование, при этом данные физиологического эксперимента используются в качестве исходного материала для создания моделей. Одним из наиболее перспективных направлений нейрокибернетики -на стыке между психологией, биологией и информатикой является моделирование на основе нейронных сетей. Нейрокибернетика имеет широкий спектр приложений – от медико-биологических разработок до создания специализированных нейрокомпьютеров. [63]
Нейрокомпьютер (Neurocomputer) – устройство переработки информации на основе принципов работы естественных нейронных систем. Эти принципы были формализованы, что позволило говорить о теории искусственных нейронных сетей. Проблематика же нейрокомпьютеров заключается в построении реальных физических устройств, что позволит не просто моделировать искусственные нейронные сети на обычном компьютере, но так изменить принципы работы компьютера, что станет возможным говорить о том, что они работают в соответствии с теорией искусственных нейронных сетей [64
О проекте
О подписке