Читать книгу «Мой подводный мир» онлайн полностью📖 — Юрия Беркова — MyBook.

1.2. Дыхательные аппараты

1.2.1. АКВАЛАНГ

Многие из Вас, вероятно, видели очень интересные научно-популярные кинофильмы «Голубой континент», «В мире безмолвия», «Мир без солнца» и художественный фильм «Человек-амфибия». Нельзя не восхищаться изумительными красками подводного мира, бесконечным разнообразием его обитателей и – особенно – той непринужденностью, с которой двигаются под водой люди. Проникнуть в этот таинственный мир, сделать его доступным для любого человека, умеющего плавать, помогли акваланги.

Акваланги относятся к легким водолазным аппаратам, позволяющим тренированному человеку опускаться на глубину 40 – 50 м, но рекордсмены по погружениям на большие глубины – французы Кусто и Дюма – опускались с ними на глубину около 100 м. Прогулки же на глубинах 10 – 20 м доступны каждому человеку, снабженному аквалангом.

Пловец с аквалангом имеет возможность своими глазами увидеть подводный мир и запечатлеть его на камеру, может охотиться на рыб и морских животных, стреляя гарпунами из специальных пневматических или пружинных ружей.

Акваланги получили самое широкое распространение среди дайверов. Кроме того, выпускается множество приспособлений, позволяющих человеку чувствовать себя на глубине как «рыба в воде»: Сухие и мокрые гидрокостюмы для пребывания в холодной воде, ласты для ног, увеличивающие скорость плавания, разнообразные шлемы и маски, герметичные фото и кинокамеры, глубиномеры, компасы и часы, различные ружья и пистолеты.

Число подводных охотников в тёплых южных морях уже настолько велико, что они начинают мешать судо-ходству. В связи с этим вдоль Средиземноморского побережья Франции пришлось выделить зоны, лишь в пределах которых разрешена охота с аквалангами.

Причину популярности акваланга нетрудно понять – она заключается в его простоте и доступности. Акваланг может приобрести каждый; он прост в изготовлении и поэтому сравнительно дешев. Обслуживание аквалангов также не сложно – оно заключается в заполнении баллонов сжатым воздухом, что можно сделать ручным или электрическим компрессором.

Однако прототип современного акваланга был создан не для научных исследований и не для спорта: недаром он появился в 1943 г., когда шла война и гибли сотни английских, американских, немецких и других кораблей и транспортных судов. Изобретатели акваланга – французские моряки Жак Ив Кусто и Фредерик Дюма – очень много работали, помогая поднимать затонувшие суда. Ими была создана специальная школа по подготовке военных водолазов-аквалангистов. Необходимость работы на все больших глубинах заставила изобретателей непрерывно совершенствовать акваланг.

После войны Кусто и его товарищам удалось снарядить экспедицию на судне Калипсо. Летом 1952 г. их экспедиции повезло. Обследуя дно в окрестностях Марселя, один из водолазов случайно обнаружил на дне какие-то горшки. Это были амфоры – сосуды, в которых древние греки хранили вино и масло. Оказалось, что водолазы нашли древнегреческое судно, пролежавшее на дне две тысячи лет. Его полностью засосало илом. Чтобы освободить находку из песчаного плена, пришлось размывать ил водой, для чего была установлена специальная насосная станция. Насосы под большим напором подавали воду в шланги, направляемые водолазами. В результате упорного труда ил был размыт, и множество амфор и других очень интересных находок было поднято на поверхность.

Известная по фильму «Голубой континент» итальянская экспедиция в Красном море поставила целью изучение хищных рыб, которыми это море особенно богато. В общей сложности водолазы провели под водой 10000 часов, погружаясь на глубины 40 – 50 м. Они изучали повадки рыб, исем мире по фильму «В мире безмолвия». Невольно вспоминаются слова одного из первых энтузиастов подводных путешествий Вильяма Биби: «Читатель, искренно советую тебе: если у тебя есть хоть малейшая возможность, добудь себе водолазное снаряжение, купи его, займи у кого-нибудь, ну хоть укради, если на то пошло, и опустись на дно океана, чтобы хоть раз в жизни собственными глазами увидеть эту картину»…

На рисунке 1 показано устройство акваланга, а его принципиальная схема на рис. 2. Необходимый запас воздуха под давлением 150 – 200 кг/см2 накачивают в баллоны (например, емкостью 7 л каждый). Зарядка баллонов производится через специальный штуцер и невозвратный клапан. При открытии запорного клапана воздух из баллонов поступает в редукционный клапан, снижающий его давление до 7 атм. Давление за редукционным клапаном можно изменять, регулируя затяжку его пружины. Далее воздух поступает в дыхательный автомат (иногда его называют «лёгочный автомат»), который на любой глубине уравновешивает давление вдыхаемого воздуха с давлением воды. Дыхательный автомат как бы дублирует работу легких. При вдохе во внутренней полости автомата давление понижается, и наружные стенки «легких» прогибаются, нажимая на рычаги, открывающие клапан, и в легкие поступает новая порция воздуха; по достижении в них давления, равного внешнему, стенки мембраны выпрямляются и клапан закрывается.


Рис. 1. Общий вид аппарата ABM I

1 – стальные баллоны со сжатым до 150 атм воздухом; 2 -бугель крепления баллонов; 3 – ремнн; 4 – шланги; 5 – загубник; 6 – наголовник для удержания загубника; 7 – запорные вентили баллонов; 8 — дыхательный автомат с редуктором; 9 – манометр, показывающий давление в баллонах; 10 – гибкий шланг подачи воздуха на манометр.


При выдохе воздуха давление в автомате выше наружного и клапан впуска закрыт.

Из дыхательного (или лёгочного) автомата вдыхаемый воздух поступает в тройник – клапанную коробку. Выдыхаемый воздух через невозвратный клапан выдоха, выходит наружу. Третий патрубок тройника имеет трубку, с помощью которой, плавая у поверхности, можно дышать атмосферным воздухом, не расходуя воздуха из баллонов. Для перехода на атмосферный воздух имеется специальный переключатель.


Впрочем, имеются и другие конструкции аквалангов; объем и количество воздушных баллонов также могут быть разными. Существуют, например, акваланги с одним или тремя баллонами. Давление в баллонах тоже разное. Есть баллоны на 150 и 200 атм. В последнее время появились баллоны на 300 и 400 атм.



Рис. 2. Принципиальная схема аппарата АВМ-1м.

1 – вентиль; 2 и 12 – пружине; 3 — резиновый клапан выдоха; 4 и 6 – рычаг; 5 и 8 – мембрана; 7 – дыхательный автомат; 9 — винт; 10 — оси 11 – шток автомата; 13 – толкатель; 14 – клапан.


Маски также бывают различного типа: иногда герметизируют только область глаз (очки) причем на нос ставят зажим. Или герметизируют глаза и нос (полумаска), а вдох осуществляют через загубник. Имеются маски, полностью закрывающие лицо (полнолицевые с загубником или обтюратором для дыхания). Тогда к маске прикрепляется клапанная коробка. Но при всем разнообразии конструкций аквалангов сохраняется дыхательный автомат, или «подводные легкие», давшие название всему аппарату.

В самом деле, если бы не было дыхательного автомата, автоматически подающего воздух в легкие всегда в необходимом количестве и под нужным давлением, не было бы и аппарата, превращающего человека в амфибию. Вид современного акваланга представлен на рис. 3.


Рис. 3. Вид современного акваланга АВМ-12.


Казалось бы всё прекрасно! Живи и радуйся человек, способный плавать под водой как рыба. Но нет! Есть у акваланга и недостатки.

Главный недостаток – это открытая схема дыхания, при которой выдох водолаза производится в воду и сопровождается многочисленными пузырями. Это приводит к быстрому расходу воздуха, особенно на больших глубинах, когда воздух сжат, а лёгкие потребляют его в том же количестве, что и на поверхности. При минимальной физической нагрузке (в покое) объём лёгочной вентиляции водолаза обычно составляет 20 – 25 л/мин, а в случае повышения физической нагрузки (быстром плавании, например), объём лёгочной вентиляции возрастает, и может достигнуть 100 – 120 л/мин. Поэтому время пребывания водолаза под водой на малых глубинах при небольшой нагрузке обычно составляет 40 – 60 мин, а на глубинах 30 – 40 м – 20 мин и менее.

Кроме того, в акваланге кислород воздуха расходуется крайне не эффективно. Если во вдыхаемом из баллона воздухе содержится 21% кислорода, то в выдыхаемом он равен 18%. Т.е. расходуется всего 3% кислорода.

А ещё следует учесть, что воздух, заряжаемый в баллоны, должен быть абсолютно чистым, без примесей дыма и выхлопных газов. Потому, что последние на глубине, под давлением гораздо более токсичны, чем на поверхности. Поэтому иногда приходится ставить специальные фильтры для очистки воздуха, закачиваемого в баллоны.

Всё это заставило инженеров задуматься, а как повысить к. п. д. дыхательного аппарата? Как заставить его более экономно расходовать воздух и кислород? Как избежать закачки грязного воздуха? Для этого и были созданы дыхательные аппараты замкнутого и полузамкнутого циклов.

1.2.2. ДЫХАТЕЛЬНЫЙ АППАРАТ ЗАМКНУТОГО ЦИКЛА

За рубежом дыхательные аппараты замкнутого цикла называют ребризерами. Ребризер (от англ. Re – приставка, обозначающая повторение какого-либо действия, и англ. Breath – дыхание, вдох) – дыхательный аппарат, в котором углекислый газ, выделяющийся в процессе дыхания, поглощается химическим составом (химпоглотителем), затем смесь обогащается кислородом и подаётся на вдох. Русское название ребризера – изолирующий дыхательный аппарат (ИДА).

Первый такой аппарат был создан и применен британским изобретателем Генри Флюссом в середине XIX века при работе в затопленной шахте (значительно раньше акваланга). Кислородный ребризер замкнутого цикла имеет все основные детали, характерные для ребризера любого типа: дыхательный мешок, коробка с химпоглотителем (ХПИ), дыхательные шланги с клапанной коробкой, байпасный клапан (ручной) или дыхательный автомат, травящий клапан и баллон с редуктором высокого давления.

Принцип работы следующий: кислород из дыхательного мешка поступает через невозвратный клапан в легкие водолаза, оттуда, через другой невозвратный клапан кислород и образовавшийся при дыхании углекислый газ попадает в коробку с ХПИ, где углекислый газ связывается натриевой известью, а оставшийся кислород возвращается в дыхательный мешок. Кислород, заменяющий потребленный водолазом, подается в дыхательный мешок дыхательным автоматом, или байпасом, когда мешок сжимается при вдохе.