Энергетическое производство включает три основные фазы: производство энергии, ее распределение и потребление. Производство энергии осуществляется электрическими станциями; распределение (транспорт) энергии осуществляют энергетические сети. Фаза энергопотребления осуществляется энергопотребляющими установками потребителей, включающими приемные установки (понизительные подстанции), местные распределительные сети и энергоприемники (токоприемники), преобразующие электрическую энергию в те виды энергии, которые необходимы для осуществления технологических процессов промышленного производства или других целей.
В целом процесс энергоснабжения осуществляется энергетическими системами, объединяющимися в единый производственно-транспортный комплекс электростанции и сети. Электроэнергия производится на электростанциях разных типов: тепловых (ТЭС), гидравлических (ГЭС), атомных (АЭС), а также на установках, использующих так называемые нетрадиционные возобновляемые источники энергии (НВИЭ). Основным типом электростанций являются тепловые, на которых используется органическое топливо: уголь, газ, мазут. В структуре генерирующих мощностей доля ТЭС составляет 65 %, АЭС – 15 %, ГЭС – 20 %. Среди НВИЭ наибольшее распространение в мире получили солнечные, ветровые, геотермальные электростанции, установки, работающие на биомассе и твердых бытовых отходах.
Тепловые электростанции оборудуются паротурбинными энергоблоками различных мощностей и параметров пара, а также газотурбинными (ГТУ) и парогазовыми (ПГУ) установками. Последние могут работать и на твердом топливе (например, с внутрицикловой газификацией).
Основу производственного потенциала электроэнергетики России составляют электростанции общего пользования; на них приходится более 90 % генерирующих мощностей. Остальная часть – ведомственные электростанции и децентрализованные энергоисточники. В структуре мощностей электростанций общего пользования лидируют паротурбинные ТЭС.
Тепловые электростанции (ТЭС) используют в качестве электрических ресурсов различные виды ископаемых (органических) топлив (твердых, жидких и газообразных): угли, торф, сланцы, нефть (мазут), природный газ. Основным оборудованием ТЭС являются паровые котлы и паровые турбоагрегаты (паровые турбины, связанные общим валом с электрическими генераторами), работающие раздельно или соединенные в энергетические блоки (котел – турбоагрегат).
Тепловые электростанции включают конденсационные (КЭС), генерирующие только электроэнергию, и теплоэлектроцентрали (ТЭЦ), на которых осуществляется комбинированная выработка электроэнергии и тепла. Электрическая энергия вырабатывается на ТЭЦ турбоагрегатами при работе турбин по теплофикационному циклу. Тепловая энергия отпускается в отработавшем паре, поступающем из промежуточных отборов или конечного (противодавленческого) отбора турбин. Тепловые электростанции могут различаться в зависимости от начального давления пара (перед турбогенераторами). Кроме того, теплоэлектроцентрали (ТЭЦ) делятся по типам установленных на них турбоагрегатов.
Атомные электростанции (АЭС) являются тепловыми, но в отличие от топливных ТЭС используют в качестве первичного ресурса не органическое топливо, а атомную энергию природного или обогащенного урана. Основным оборудованием АЭС являются атомные реакторы, котлы и паровые турбоагрегаты.
Гидроэлектростанции (ГЭС) используют для выработки электроэнергии гидроэнергетические ресурсы, которые в отличие от топливных являются возобновляемыми. Энергетической базой ГЭС является водохранилище, создаваемое сооружением подпорной плотины в заданном створе водотока (реки). Основным оборудованием ГЭС являются гидроагрегаты (гидравлические турбины, связанные с общим валом, обычно вертикальным) с электрическим генератором.
Гидроэлектростанции могут различаться: по напору – высоконапорные (горные) и низконапорные (равнинные); по зарегулированности водотока – с суточным, сезонным, годовым, многолетним регулированием; по мощности.
Электростанции объединены электрическими сетями разного уровня напряжения на параллельную работу в электроэнергетические системы. Электрические связи между энергетическими системами формируют единую энергосистему страны (ЕЭС).
Электрические и тепловые сети являются аппаратом распределения (транспорта) энергии в энергетической системе. Основными технологическими элементами электросетевого комплекса служат линии электропередачи (воздушные и кабельные) и трансформаторные подстанции с соответствующим вспомогательным оборудованием. Различают магистральные и распределительные электрические сети; последние доводят электрическую энергию от узлов нагрузки до абонентских установок потребителей. Линии электропередачи напряжением 0,4–1150 кВ имеют общую протяженность порядка 3 млн км, в том числе магистральные электросети напряжением 220–1 150 кВ – 157 тыс. км.
Обслуживанием ЛЭП и подстанций занимается предприятия электрических сетей (ПЭС). В ведении этих предприятий находятся также трансформаторные подстанции (ТП) и распределительные устройства (РП). Они трансформируют электроэнергию с высокого (110, 35, 6–10 кВ) на низкое, потребительское, напряжением 220–380 кВ и распределяют ее в районах и микрорайонах города для жилых и общественных зданий.
Для обеспечения надежного энергоснабжения и качества электроэнергии в соответствии с требованиями технических регламентов в масштабе всей ЕЭС создана система оперативно-диспетчерского управления (ОДУ). Она построена по иерархическому принципу; ее верхний уровень представлен организацией – системным оператором (СО) ЕЭС России, которому подчинены органы ОДУ объединенных и районных энергосистем. Свои функции органы ОДУ осуществляют через централизованное управление технологическими режимами работы объектов электроэнергетики и электропотребляющих установок потребителей.
К объектам теплоэнергетики относятся теплоисточники (паровые и водогрейные котельные), а также тепловые сети (магистральные и распределительные) с трубопроводами, насосными станциями и тепловыми пунктами. Тепловые сети осуществляют передачу и распределение тепловой энергии. Они делятся по виду теплоносителя на водяные и паровые. Задачей тепловых сетей является распределение тепловой энергии внутри отдельных районов теплоснабжения. Предприятия тепловых сетей (ПТС) эксплуатируют магистральные и распределительные паро- и теплопроводы в городах и населенных пунктах.
Котельные имеют разную ведомственную принадлежность (муниципальные, промышленные и др.). Среди них выделяются централизованные теплоисточники, обслуживающие целый район теплоснабжения или группу разных потребителей, и децентрализованные, прикрепленные к конкретным абонентам. В России централизованно вырабатывается около 70 % тепловой энергии. Но дальность передачи тепла, в отличие от электроэнергии, ограничена по технико-экономическим соображениям: для пара – до 1,5–2 км, а для горячей воды – до 20–30 км.
Главными функциями теплоэнергетики являются:
● надежное и бесперебойное обеспечение потребителей необходимыми им теплоносителями с требуемыми объемными и качественными параметрами;
● поддержание теплового комфорта в жилых и общественных зданиях (в строгом соответствии с температурами наружного воздуха).
Данные функции должны реализовываться на основе внедрения экономически и экологически оптимальных схем теплоснабжения городов и сельских районов страны.
Тепловая энергия в виде пара и горячей воды широко применяется в различных отраслях народного хозяйства для технологических нужд, отопления, вентиляции и горячего водоснабжения. Следует подчеркнуть, что электроэнергия и теплоэнергия – взаимозаменяемые и конкурирующие энергоносители. Особенно это касается силовых и среднетемпературных процессов, где в качестве энергоносителя может использоваться как пар различных параметров, так и электричество. При благоприятных экономических предпосылках электроэнергия может заменять горячую воду в низкотемпературных процессах, обеспечивая более качественное регулирование параметров и потребительский комфорт.
О проекте
О подписке