Саманта Клейнберг — лучшие цитаты из книг, афоризмы и высказывания
image

Цитаты из книг автора «Саманта Клейнберг»

96 
цитат

Один из редких примеров действительно одновременного наступления причины и следствия, когда применяемая для измерения временная шкала не имеет значения и мы не можем сказать, что произошло первым, дает физика. Существует так называемый парадокс Эйнштейна — Подольского — Розена (ЭПР)[33], когда две частицы связаны таким образом, что при изменении импульса или положения одной из них эти же свойства другой частицы меняются в полном соответствии с первой18.
11 июля 2019

Поделиться

В целом нужно не только оценить, с какой вероятностью конкретное событие оказывается поводом для исхода, но и сформулировать гипотезу о факторах, которые становятся причинами. Если вы, к примеру, получили пищевое отравление, то вам нужно не просто оценить, мог ли его спровоцировать отдельный продукт. Чтобы определить «виновника», вы проанализируете все, что употребляли в пищу. И время становится важным фактором, ведь под подозрение попадут блюда, которые вы ели совсем недавно, а не на прошлой неделе.
11 июля 2019

Поделиться

Но время тоже способно вводить в заблуждение: мы можем обнаружить корреляции между несвязанными временными рядами со схожими трендами, можем оказаться не способны выяснить причину для запаздывающих следствий (например, между воздействием окружающей среды и состоянием здоровья), а между несвязанными событиями ошибочно установить связь, если одно из них предшествует другому (изготовители зонтиков, которые открыли свой магазин до сезона дождей, разумеется, не стали его причиной).
11 июля 2019

Поделиться

Причина, влиявшая на нечто в прошлом, целиком противоречит нашему пониманию причинности. Мы считаем, что причины предшествуют следствиям (если только не приближены по времени), и существует убедительная физическая зависимость, связывающая причину и следствие. И все же эксперимент проводился согласно обычным стандартам выборочных экспериментов (например, двойным слепым методом), а результаты оказались статистически значимыми в соответствии с общепринятыми критериями.
11 июля 2019

Поделиться

Мы часто спорим, почему корреляция может не иметь причинного характера, но важно признать, что также могут существовать истинные причинные взаимосвязи без видимого соотношения. То есть корреляцию нельзя считать демонстрацией причинности, и выявление взаимосвязи также не необходимое условие причинности.
11 июля 2019

Поделиться

Подобная тенденция отбора данных довольно типична. Возьмем, к примеру, сайты, опрашивающие посетителей насчет их политических взглядов. В интернете не получится отобрать участников опроса случайно в масштабах всего населения, а данные источников с сильным политическим уклоном искажены еще сильнее. Если посетители конкретной страницы активно поддерживают действующего президента, то результаты по ним, возможно, покажут, что рейтинг главы государства растет каждый раз, когда он произносит важную речь. Однако это показывает лишь то, что есть корреляция одобрения президента и произнесения им речей перед сторонниками (поскольку на вопросы отвечают представители всего населения).
11 июля 2019

Поделиться

Это одна из причин, почему нельзя интерпретировать нулевую корреляцию (пирсоновскую или любую другую) как вообще незначимую (существуют и другие причины, например ошибки в измерениях или первичные данные, искажающие результаты). Еще одна важная причина заключается в том, что данные могут не быть репрезентативными с точки зрения исходного распределения. Если бы нам разрешили взглянуть на статистику смертей от гриппа, но предоставили только данные о количестве больных, поступивших в лечебные учреждения, и вызовов скорой помощи, мы наблюдали бы гораздо более высокий процент летальных исходов, чем в масштабах всего населения.
11 июля 2019

Поделиться

Означает ли это, что есть корреляция между названными условиями и получением гранта? Нет, не означает, потому что, не видя вариации исходного результата, нельзя определить, соотносится ли с ним какой-то иной фактор.
11 июля 2019

Поделиться

коэффициент корреляции Пирсона (обычно его обозначают буквой r)10. Этот показатель может иметь значение от 1 до –1. При значении 1 переменные обладают
11 июля 2019

Поделиться

размещенных точек: месяц рождения варьируется, но соответствующего изменения в росте нет. Рис. 3.1. Возраст и рост коррелируют, но рост и месяц рождения — нет Это также означает, что, зная возраст ребенка, мы можем примерно предсказать его рост, а зная месяц рождения — нет. Чем ближе точки друг к другу, формируя линию, тем точнее наши прогнозы (поскольку при этом взаимосвязи теснее). Предсказание — одна из ключевых сфер применения корреляций, и в ряде случаев его можно сделать и без причинных взаимосвязей (хотя не всегда успешно).
11 июля 2019

Поделиться

1
...
...
10