Читать книгу «Разгром 1941» онлайн полностью📖 — Марка Солонина — MyBook.

2.4. Уравнение существования

Мы подошли к самому главному. Главным для понимания процесса проектирования самолета является закон природы, который в авиации получил изящное название «уравнение существования». Этот закон (подобно II закону термодинамики) имеет множество совершенно непохожих друг на друга формулировок. Например: «невозможно изменить вес любой составляющей самолета (двигатель, планер, топливо, шасси, вооружение) без того, чтобы для сохранения исходных летных характеристик не пришлось изменить вес всех остальных компонентов». Например, дополнительная пушка весом в 50 кг потребует (если мы хотим сохранить исходную тяговооруженность и связанные с ней разгонные и маневренные характеристики) небольшой «добавки» мощности двигателя. Чуть более мощный двигатель будет и несколько тяжелее. Для него потребуются более тяжелый винт и лишние литры топлива (если мы хотим сохранить исходную дальность и продолжительность полета). Потяжелевший самолет потребует усиления конструкции шасси, а для сохранения исходной удельной нагрузки на крыло потребуется увеличить площадь крыла, что приведет к росту аэродинамического сопротивления, для преодоления которого (если мы хотим сохранить максимальную скорость исходного самолета) придется увеличить мощность двигателя, который станет еще тяжелее…

Закончится ли в конце концов эта «цепная реакция». Да. Чем? Появлением нового самолета, в котором относительные доли веса каждого агрегата в общем весе самолета останутся точно такими же, как и раньше, но весь самолет в целом станет тяжелее. Это еще одна возможная формулировка «уравнения существования».

Поясним сказанное простым, но при этом вполне реалистичным числовым примером. Предположим, что на неком «исходном самолете» был двигатель мощностью в 1000 л.с. и две пушки общим весом 100 кг, при этом вес пушек составлял 4 % от общего веса (т. е. самолет весил 2,5 тонны). Добавка третьей пушки весом в 50 кг (при сохранении всех летных параметров исходного самолета!) приведет к появлению нового самолета, в котором вес пушек по-прежнему будет составлять 4 % от общего веса, но этот новый самолет будет иметь вес в 3,75 тонны и потребует двигатель мощностью в 1500 л.с. (по умолчанию мы предполагаем, что вес мотора, его мощность и тяга винтомоторной установки связаны прямой пропорциональной зависимостью). Хорошо, если двигатель такой единичной мощности существует. В противном случае создать трехпушечный самолет (при сохранении всех летных параметров исходного) не удастся, так как установка двух моторов (по 750 л.с. каждый) на крыло радикально меняет аэродинамику (большее сопротивление) и маневренность (больший момент инерции и снижение угловой скорости крена).

Заслуживает внимания и удивительно малая доля вооружения в общем весе истребителей начала Второй мировой войны.

«Веллингтон»


Стремление к невозможному, т. е. желание сохранить высокую горизонтальную маневренность (на уровне лучших бипланов середины 30-х годов) и при этом добиться скорости, значительно превосходящей скорость новейших бомбардировщиков, потребовало значительного увеличения тяговооруженности, т. е. использования все более и более мощных моторов. Вес винтомоторной группы дошел до половины от веса пустого самолета, и истребитель превратился в «мотор с крыльями», где не осталось места для того главного, ради применения которого истребитель и взлетает в небо, – вооружения. Двигатель «съел» самолет…

Надеюсь, что все это не слишком сложно. Из «уравнения существования» следует множество интересных выводов. В частности, на каждом определенном этапе развития техники соотношение относительного веса планера, двигателя, топлива, полезной нагрузки у самолетов с одинаковыми летными характеристиками (скорость, дальность, скороподъемность, располагаемая перегрузка) будет почти одинаковым.

Возьмем, например, бомбардировщик, способный переместить 1 тонну бомб на расстояние в 2–3 тысячи километров с крейсерской скоростью 300–360 км/час. Этим требованиям в конце 30-х годов отвечали английский «Веллингтон», немецкие «Хейнкель-111» и «Юнкерс-88», советский «ДБ-Зф», итальянский «Савойя-Маркетти-79». Внешне это очень разные самолеты, с разным числом и типом охлаждения двигателей, разными аэродинамическими и конструктивно-силовыми схемами, сделанные из различных материалов и по-разному вооруженные.

Но – доля веса топлива в нормальном взлетном весе выражается весьма сходными цифрами: 21,2 %, 27,6 %, 27,6 %, 32,5 %, 24,8 %. Из общего ряда, как видно, выпадают два самолета: «Веллингтон» (21,2 %) и «ДБ-Зф» (32,5 %). Но это как раз тот случай, когда «исключения подтверждают правило». «Веллингтон» летал медленнее всех (крейсерская скорость всего 290 км/час), потому и расходовал топливо экономичнее, а «ДБ-Зф» имел значительно большую дальность полета (до 3300 км).

Вернемся теперь к сравнению параметров истребителей. Относительный вес конструкции (планер + двигатель + шасси) на протяжении всей войны практически не изменился, и у трех десятков самых разных по характеристикам и внешнему виду истребителей укладывался в диапазон 74–82 % от общего взлетного веса самолета. Другими словами, на топливо и полезную нагрузку оставалось порядка 18–26 % от взлетного веса. Например, вес конструкции истребителя «Мессершмитт» «Bf-109»Е-3 составлял 2016 кг; полезная нагрузка (592 кг, или 22,8 % от взлетного веса) состояла из топлива и масла (330 кг), вооружения с боеприпасами (172 кг), летчика с парашютом (90 кг).

А теперь сравним весовые характеристики «Мессершмитта» серии Е (один из самых легких истребителей начала войны) с весом самого тяжелого одномоторного истребителя конца войны.

История создания и боевого применения американского «Тандерболта» (вес пустого 4452 кг, нормальный взлетный вес 5961 кг) может послужить отличной иллюстрацией сразу нескольких основополагающих правил самолетостроения. Высокая удельная нагрузка (214 кг на кв. м) позволила самому тяжелому истребителю Второй мировой стать одновременно и рекордсменом скорости. Четвертая часть от 6 тонн взлетного веса американского истребителя составляет 1500 кг, но летчик, пилотирующий 6-тонный самолет, ничуть не толще и не тяжелее других. Вместе с парашютом он весит не более 100 кг. В результате на вооружение, приборное оборудование и топливо в «Тандерболте» остается 1400 кг – в три раза больше, чему «мессера» серии Е.

Вот поэтому на борту «Тандерболта» мы и обнаруживаем 6 или 8 крупнокалиберных пулеметов с огромным боекомплектом (в перегрузочном варианте – до 3400 патронов); в кабине летчика – полный комплект всевозможного оборудования (от писсуара до автопилота и средств радионавигации); за спиной пилота – мощное бронирование, под ногами – совершенно уникальная стальная «лыжа», сберегающая жизнь летчика при вынужденной посадке на фюзеляж. Для штурмовки наземных целей «Тандерболт» мог поднять 900 кг бомб и 10 ракет калибра 127 мм (это соответствует боевой нагрузке двух наших штурмовиков «Ил-2»). Максимальная дальность полета в 3780 км (с подвесными баками) позволяла сопровождать любой бомбардировщик, даже тот, который в Германии или СССР назывался бы «дальним».

Таким образом, огромные усилия американских ученых и инженеров, создавших для «Тандерболта» двигатель с турбонаддувом единичной мощностью в 2300 л.с., были потрачены не зря. Они позволили создать одноместный одномоторный самолет, который при вполне приемлемых летных характеристиках (и даже рекордной скорости) имел взлетный вес в 6 тонн. Большой взлетный вес (а значит, и большой вес полезной нагрузки) позволил создать на базе этого самолета высокоэффективную многоцелевую систему вооружения, способную на огромных пространствах выполнять самые разнообразные боевые задачи.

Шеститонный самолет и двигатель мощностью в 2300 л.с. – это не только огромное достижение конструкторской мысли. Это еще и огромные финансовые затраты, огромный расход топлива на каждый вылет. Нельзя ли решить задачу проще и дешевле? «Уравнение существования» подсказывает несколько возможных путей. Во-первых, всегда можно «купить» рост одних характеристик ценой снижения других. Вернемся к примеру с установкой дополнительной третьей пушки на легкий истребитель весом в 2,5 тонны. Совсем необязательно запускать «цепную реакцию» роста абсолютного веса всех агрегатов самолета. Самый простой и быстрый способ – залить в топливный бак на 50 кг бензина меньше. При этом сохранятся все летные характеристики исходного самолета. Кроме одной – дальности полета. Приемлемая ли это цена за увеличение огневой мощи вооружения? В ряде случаев – да. А если далеко летать не надо, то можно и часть приборного оборудования снять, а за счет экономии веса «купить» дополнительный боекомплект.

Есть и гораздо лучший способ разумного использования «уравнения существования». Совсем необязательно улучшать одни параметры ценой ухудшения других. Можно (и нужно) пойти другим путем. 50 и более кг веса можно сэкономить за счет снижения веса конструкции. Так как вес планера (фюзеляж, крыло, хвостовое оперение) составлял для истребителей эпохи Второй мировой войны порядка 35–40 % веса пустого самолета, то даже самое скромное облегчение конструкции позволяло найти «лишние» 2–3 % веса, позволяющие очень заметно увеличить полезную нагрузку.

«Самое главное глазами не увидишь». Эти слова знаменитого летчика, писателя и философа А. Экзюпери очень точно

Премиум

4.12 
(17 оценок)

Разгром 1941

Установите приложение, чтобы читать эту книгу