По системе venae portae (воротная, или портальная, вена) от кишечника в печень поступает кровь с питательными веществами и бактериальными или лекарственными токсинами. Также из селезенки по этой вене идут естественные продукты рециркуляции клеток крови.
Селезенку называют кладбищем эритроцитов, поскольку одна из ее главных функций – это удаление постаревших или поврежденных эритроцитов. За одну секунду разрушается около 2,5 миллиона эритроцитов.
Печеночная артерия приносит свежую, насыщенную кислородом кровь из главного сосуда – аорты. И в печеночных синусоидах, которые находятся между тяжами основных клеток печени, гепатоцитов, эти два потока крови смешиваются – происходит одновременный процесс очистки крови и питания клеток печени.
Печень удерживает около 10 % крови в нашем теле и перекачивает почти 1,5 литра в минуту, потребляя более 20 % от общего объема кислорода в организме.
Печень представляет собой густую сеть из гепатоцитов, кровеносных сосудов и мелких желчных протоков. Такое строение обеспечивает огромную поверхность, где каждая клетка контактирует с кровью, и это обеспечивает максимальный обмен веществами между клеткой и кровью, чтобы контролировать ее состав.
Архитектоника здоровой печени уникальна – она содержит сотни тысяч печеночных долек, представляющих собой усеченные шестигранные призмы.
Дольки отчетливо видны в свиной печени, которая имеет оболочку из волокнистой соединительной ткани вокруг каждой дольки. Эта жесткая соединительная ткань – одна из причин, по которой свиная печень, в отличие от телячьей и куриной, не становится популярным блюдом.
Классическая печеночная долька имеет диаметр 1–1,5 мм и высоту 1,5–2 мм и состоит из пластинок, имеющих радиальное направление в виде балок, образованных основными клетками печени – гепатоцитами.
В центре дольки находится центральная вена, а с периферии в печеночную дольку проникают кровеносные капилляры, которые служат продолжением междольковых вен (из системы воротной вены) и артерий, проходящих в междольковых соединительнотканных прослойках.
Выходящие из капиллярной сети сосуды впадают в центральную вену дольки, по которой кровь оттекает в междольковые собирательные вены. Последние в дальнейшем формируют печеночные вены, впадающие в нижнюю полую вену, и уносят очищенную кровь к сердцу.
На поверхности отдельных гепатоцитов находятся борозды, которые вместе с подобными бороздами соседних клеток образуют тончайшие каналы (диаметром около 1 мкм) – желчные капилляры, или желчные проточки. Именно здесь зарождается желчь. Собственной стенки желчные капилляры не имеют, они заканчиваются в центральных отделах дольки, а на периферии образуют междольковые желчные проточки, выстланные холангиоцитами. Последние переходят в сегментарные, секторальные, долевые (правый и левый печеночный) протоки и, наконец, в общий печеночный проток – холедох, который выходит в просвет тонкой кишки. Именно так выглядит билиарное дерево. Самый простой метод его визуализации – это МРТ в режиме холангиографии (МРХПГ – МР-холангиопанкреатография).
Совсем недавно в американском журнале Hepatology вышла статья, написанная рядом ученых во главе с Нима Никнежад (N. Niknejad) (2023), занимающихся проблемой генетического заболевания под названием «синдром Алажиля» (артериопеченочная дисплазия). Зарубежные коллеги провели доклиническое исследование терапии на мышиных моделях (да-да, на фото вы видите печень мышей – введение контраста по желчным протокам демонстрирует всю красоту нормы и патологии билиарного дерева).
При синдроме Алажиля (левая часть рисунка) билиарное дерево плохо развито и имеет вдвое меньше протоков, присутствующих в здоровой печени, которая обычно показывает хорошо развитое билиарное дерево (правая часть рисунка).
Междольковые артерии, вены и междольковые желчные проточки, лежащие параллельно друг другу в прослойках междольковой соединительной ткани, образуют триады печени, располагающиеся на концах печеночных долек.
А теперь настало время поговорить о роли печени в нашем теле.
В нашем организме практически нет путей обмена веществ, которые напрямую или косвенно не контролировались бы печенью. Она выполняет более 500 жизненно важных функций. С током крови различные химические вещества, токсины и продукты жизнедеятельности нашего организма попадают в печень, а она, подобно фильтру, регулирует их содержание в крови, выводя излишки с желчью, которую сама же и производит. Печень обрабатывает нашу кровь, расщепляет, уравновешивает и создает питательные вещества, а также метаболизирует лекарства в формы, которые легче использовать для остального тела или нетоксичные.
Наиболее известные функции
• Производство желчи, которая помогает выводить отходы и расщеплять жиры в тонкой кишке во время пищеварения.
• Выведение билирубина, а также обезвреживание ксенобиотиков, стероидных и тиреоидных гормонов, эндогенных метаболитов.
• Производство холестерина.
• Преобразование избытка глюкозы в гликоген для хранения (гликоген позже может быть преобразован обратно в глюкозу для получения энергии), а также для сохранения баланса и производства глюкозы по потребностям организма.
• Поглощение свободных жирных кислот и запас триглицеридов в своих клетках.
• Превращение ядовитого аммиака в мочевину (это конечный продукт белкового обмена, она выводится почками).
• Производство альбумина, белков свертывания крови, строительных и транспортных белков.
• Хранение железа, жирорастворимых витаминов, витамина В12, меди, железа и гликогена.
• Участие в преобразовании витаминов.
• Сопротивление инфекциям с помощью производства иммунных факторов и удаления бактерий из кровотока.
Резервуарная функция для крови
• Циркуляция с низким сосудистым сопротивлением.
• Действует как венозный резервуар (вместе с кожей, селезенкой и легкими).
• Большой объем крови может быть мобилизован в печеночный кровоток или из него, чтобы компенсировать колебания сердечной преднагрузки. По некоторым оценкам, этот резервуар может составлять 27 % от общего объема крови.
Обменные процессы в печени находятся под чутким нейрогуморальным контролем. Иннервация печени осуществляется ветвями блуждающих нервов и печеночного (симпатического) сплетения. Гормоны эпифиза, аденогипофиза, надпочечников, поджелудочной и щитовидной желез также принимают участие в регуляции метаболических путей в печени.
Печень – это неустанная фабрика желчи – желтой, зеленой или коричневатой жидкости (именно билирубин придает желчи желтый оттенок, а при контакте с воздухом цвет меняется на зеленоватый). Общий желчеотток в сутки составляет примерно 600 мл, из которых 75 % происходит из гепатоцитов, а 25 % – из холангиоцитов.
Желчь необходима для следующего.
• Облегчения переваривания и всасывания жиров в кишечнике.
• Выведения продуктов жизнедеятельности из организма – в первую очередь холестерина и билирубина, а также продуктов обмена лекарств и других веществ.
Представители семейства оленевых (лоси и косули), а также лошади, слоны, носороги и верблюды не имеют желчного пузыря, так как в их рационе жиров крайне мало – необходимость в наличии этого органа попросту отпадает.
Основные этапы образования желчи – захват желчных кислот и ионов из плазмы крови, а затем транспорт через гепатоцит и выведение через канальцевую мембрану, на которую приходится всего 1 % площади поверхности гепатоцита.
Гепатоцит производит желчь, секретируя воду с определенным веществами, которые необходимо вывести в кишечник (конъюгированный [он же связанный, он же прямой] билирубин, соли желчных кислот (конъюгированные желчные кислоты), холестерин, фосфолипиды, белки, ионы) в свои канальцы – пространство между соседними гепатоцитами, которые в конечном счете соединяются, образуя желчные канальцы. Этот процесс осуществляется благодаря двум видам белков в канальцевой мембране – белков-переносчиков (переносят желчные кислоты и ионы) и белков-транспортеров (переносят различные молекулы в желчь). Эти белки помогают секретировать молекулы в желчь против градиентов концентрации, а также ферменты, такие как щелочная фосфатаза. Благодаря этому активному транспорту формируются осмотические и электрохимические градиенты желчи.
Когда конъюгированные соли желчных кислот попадают в канальцы, за счет осмоса туда же следует и вода. Электрохимический градиент обеспечивает пассивную диффузию неорганических ионов, таких как натрий. Наиболее важный стимулятор образования желчи – это прохождение конъюгированных солей желчных кислот в желчные канальцы – примерно половина гепатоцитарного компонента желчи (около 225 мл в сутки) зависит от солей желчи. Осмотически активные растворенные вещества, такие как глутатион и бикарбонат, способствуют независимому оттоку желчи.
Далее при прохождении через билиарный тракт желчь модифицируется эпителиальными клетками желчных протоков. Эти клетки, известные как холангиоциты, разжижают и подщелачивают желчь за счет абсорбционных и секреторных процессов, которые регулируются гормонами, вырабатываемыми в процессе пищеварения. Все это модулирует поток богатой бикарбонатом желчи. Бомбезин, вазоактивный интестинальный полипептид, ацетилхолин и секретин усиливают отток желчи, а соматостатин, гастрин, инсулин и эндотелин ингибируют отток желчи.
Вот почему пить больше воды, чтобы улучшить отток желчи, абсолютно бессмысленно – он зависит от содержания солей и осмотически активных веществ, от активности гормонов, вырабатывающихся во время пищеварения, а не от потребления обычной воды.
Желчь проходит через печень по ряду протоков, в конечном счете выходя через общий печеночный проток. По этому протоку желчь поступает в желчный пузырь, где концентрируется и накапливается. При стимуляции гормоном холецистокинином (который вырабатывается в большей степени благодаря приему жиров с пищей) желчный пузырь сокращается, выталкивая желчь через пузырный проток в общий желчный проток (он же холедох). Одновременно расслабляется сфинктер Одди, позволяя желчи попасть в начальные отделы тонкой кишки – двенадцатиперстной кишки. Гормон секретин также играет важную роль в поступлении желчи в кишку. Стимулируя клетки желчных протоков и протоков поджелудочной железы к секреции бикарбоната и воды в ответ на присутствие желудочного сока в двенадцатиперстной кишке, секретин эффективно увеличивает объем желчи, поступающей в двенадцатиперстную кишку.
У холестерина плохая репутация из-за его хорошо известной роли в патологии сердца и сосудов, однако это жизненно важный элемент в функционировании нашего тела. Это важнейший блок мембраны любой клетки – он помогает регулировать текучесть мембран наших клеток в диапазоне физиологических температур, сохраняя здоровье клетки.
Только 20 % холестерина поступает из пищи. Все остальное производит ваш организм.
Молекулы холестерина существуют как переносчики и сигнальные молекулы вдоль мембраны. Миелиновая оболочка нервных волокон богата холестерином – он обеспечивает их изоляцию и позволяет более эффективно проводить нервные импульсы. Кроме того, холестерин очень важен для хрусталика глаза – плазматические мембраны клеток волокон хрусталика нуждаются в нем для нормального функционирования.
Синтез холестерина – это очень древний эволюционный путь. И даже такие простейшие микроорганизмы, как фито- и зоопланктон, умеют это делать.
Холестерин необходим для производства гормонов (кортикостероидов и половых гормонов) и желчных кислот. Он настолько важен, что синтез холестерина происходит в каждой клетке организма, которая имеет ядро. Этот путь сложен и требует более 20 химических превращений, чтобы в итоге получить 1 молекулу холестерина. Подавляющее большинство эндогенного производства холестерина (внутри организма) приходится на различные ткани нашего тела – печень синтезирует всего 10–20 % от общего суточного пула этого вещества.
С помощью холестерина печень превращает неактивный витамин D (холекальциферол или эргокальциферол), который вы получаете с солнцем или принимаете дополнительно, в его проактивную форму, а далее почки уже создают витамин D.
Регуляция производства холестерина может быть объяснена простыми экономическими терминами. Как и в любой эффективной экономике, предложение холестерина зависит от клеточного спроса на эту молекулу. Создание холестерина de novo (производство нового – эндогенный холестерин) энергетически затратно, поэтому самый дешевый вариант для клетки – это получение готового холестерина путем поглощения его из крови. И занимаются поглощением липопротеины высокой плотности (ЛПВП), поэтому их и называют хорошим холестерином.
Поскольку слишком большое количество холестерина вредно для клетки, развились сложные механизмы, позволяющие четко регулировать его уровень с помощью механизма отрицательной обратной связи. Одним из ключевых ферментов, ограничивающим скорость биосинтеза холестерина, выступает 3-гидрокси-3-метилглутарилкофермент А (ГМГ-КоА) редуктаза, микросомальный фермент, который превращает ГМГ-КоА в мевалоновую кислоту в процессе создания холестерина – именно этот фермент служит мишенью для лекарственных препаратов, которые называют статинами.
О проекте
О подписке