Читать книгу «Вирусы. Драйверы эволюции. Друзья или враги?» онлайн полностью📖 — Майкла Кордингли — MyBook.
image

Лизогения: тренировка терпения

Некоторые фаги придерживаются исключительно хищнической стратегии репликации, которая приводит к циклам разрушения клеток-хозяев и высвобождению новых инфекционных вирусных частиц. Это завзятые гонщики мира фагов, созданные для жестокой и грубой эффективности, но лишенные всякого намека на гибкость тактики. У этих фагов одна цель – репликация любой ценой.

Другие фаги проявляют большую гибкость, и если продолжить автомобильную аналогию, то можно сказать, что они похожи на добротные туристические автомобили: они скоростные, но могут использоваться на обычных дорогах и снабжены приспособлениями, повышающими комфорт поездки, а также могут приспосабливаться к различным дорожным условиям. Эти фаги пользуются роскошью выбора стратегии после проникновения вирусной частицы в клетку. Эти фаги называют умеренными за их способность к самоограничению и умеренности, за отказ от немедленного удовлетворения страсти к литической репликации. Конечно, и эти фаги часто прибегают к лизису клетки, но при некоторых условиях они могут выбрать альтернативную стратегию и надолго поселиться в ДНК клетки-хозяина. После этого они становятся фрагментами передаваемой по наследству генетической информации, так как реплицируются вместе с хромосомой клетки, которую инфицировали. Для того чтобы этого добиться, вирус кодирует ферменты, необходимые для разрезания хромосомы и внедрения в нее собственной ДНК. Получившийся в результате профаг экспрессирует весьма ограниченный набор генов, кодирующих белки-репрессоры, которые помогают вирусу пребывать в дремлющем состоянии внутри хромосомы хозяина, где вирусная ДНК ведет себя всего лишь как еще один модуль клеточных генов. Этот процесс известен в науке под названием лизогении. Профаг сохраняется в клетке долго и передается дочерним клеткам при их делении.

Эволюция этих двух альтернативных типов поведения фагов – литическая репликация и лизогения – должны давать преимущества в выживании линии фага. Ключевым для этого преимущества является принятие правильного решения: лизировать клетку или ограничиться лизогенией. Какая тактика обеспечивает большую вероятность достижения цели вируса – распространения его генов? Для того чтобы принять это решение, вирус кодирует механизм переключения генов, который способен улавливать состояние клетки-хозяина после инфицирования. Если клетка имеет метаболический отпечаток быстро растущей здоровой популяции, то фаг предпочтет литическую репликацию. Такая стратегия обеспечивает быстрое размножение вируса и высвобождение его многочисленных потомков во внеклеточную среду, где высоки шансы встретить такую же здоровую клетку, которую можно атаковать, инфицировать и лизировать. С другой стороны, если вирус «чувствует», что инфицированная им клетка не склонна к быстрому делению, или если вокруг много других вирусов, стремящихся инфицировать ту же клетку, то он может выбрать умеренную стратегию и ограничиться лизогенией, включив свой геном в клеточную хромосому. В таких условиях это оптимальная стратегия, потому что литическая репликация в клетке, которая является частью увядающей популяции, может привести к высвобождению потомков вируса в среду, где мало пригодных к инфицированию клеток. Все будет потеряно, и вирусные частицы будут томиться в окружающей среде до самой своей гибели. Лучше сидеть тихо и передавать генетическую информацию следующим поколениям одной и той же клетки. Эта стратегия не приводит к быстрому размножению и увеличению количества вирусных частиц, но зато способствует сохранению генетического материала.

В любом случае, как у хорошего иллюзиониста, у профага есть в рукаве и иная тактика выживания. Как можно судить по самому названию, профаг может стать родоначальником фага и вступить в цикл вирулентной репликации. Если клетка, в которой имела место лизогения, испытывает какой-либо стресс и рискует погибнуть, то профаг улавливает ситуацию и принимается спасать от гибели свой геном. Бактерии обычно реагируют на стрессогенные ситуации в окружающей среде стандартными запрограммированными ответами. Особенно важным фактором активации профага является стрессовая реакция клетки на повреждение ее ДНК (Ptashne, 2004). Эта реакция заставляет профаг переключать репрессированное дремлющее состояние в состояние вирулентной репликации: вирусный геном мобилизуется, особые ферменты вырезают вирусный геном из бактериальной хромосомы, и геном восстанавливает свою репликативную форму. Профаг экспрессирует продукты гена фага, отвечающие за репликацию ДНК, после чего начинается сборка новых инфекционных вирусных частиц. Фаг успевает реплицироваться до того, как погибает клетка-хозяин. Несмотря на ненадежность шансов, потомки реплицированного фага высвобождаются, чтобы дожидаться встречи с новой подходящей клеткой-хозяином, то есть возможности новой репликации.

В популяции бактериальных клеток, в которых произошла лизогения, – в лизогенах – каждая клетка содержит в своей хромосоме копию одного и того же профага. Индукция профагов происходит с высокой частотой, если популяция подвергается стрессу, что приводит к массированному разрушению клеточной популяции. Однако в растущей здоровой популяции профаги индуцируются спонтанно с очень низкой частотой. Лабораторные исследования показывают, что на 10 000 бактериальных клеток происходит одна индукция фага в каждом поколении клеток. Несмотря на то что такая спонтанная и редкая индукция является смертельной для отдельно взятой клетки-хозяина, мы все же можем заключить, что популяция лизогенированных клеток может получать пользу от присутствия профагов.

Какими же могут быть преимущества, перевешивающие риск от присутствия в клетке такой отравленной пилюли? Одно из объяснений заключается в том, что лизогены защищены от инфицирования сходными, родственными фагами. Та же репрессивная функция, которая поддерживает устойчивое существование профага, предотвращает литическую репликацию проникшей в профаг вирусной частицы. Таким образом, фаги, высвобождаемые в результате индукции, не могут атаковать генетически идентичные лизогены, но могут инфицировать не лизогенированные или другие восприимчивые клетки. Более того, фаги, вызывающие лизогению клеток, часто привносят в нее гены, кодирующие белки, полезные для клетки. Такое явление называют конверсией фага. Разумно предположить, что лизогения в целом оказывает благотворное влияние на клеточную популяцию. Популяция лизогенных клеток как целое повышает свою приспособляемость и становится более успешной. Это преимущество, обеспечиваемое фагом, намного перевешивает вред, причиняемый индукцией и гибелью незначительного меньшинства клеток популяции.

Следуя той же логике рассуждений, будет разумно предположить, что способность профага подвергаться индукции с небольшой частотой сама по себе является преимуществом для генома фага. Привлекательна мысль о том, что это ограждающая стратегия, при которой генетически однородная популяция фагов может одновременно проявляться в двух фенотипах – в данном случае для того, чтобы оптимизировать вероятность генетической успешности. Лизогению можно считать проявлением вирусного консерватизма, стратегии, направленной на выживание в неблагоприятных условиях. Литическая репликация – это азартная игра с высокими ставками, которая окупается уверенным предсказанием результата. Фаг, который никогда не пользуется преимуществами вознаграждений в азартной игре (за исключением неопределенных ситуаций), не будет таким же эволюционно успешным, как консервативный в целом фаг, который периодически индуцируется, когда вознаграждение проявляется в виде стремительного увеличения числа вирусных частиц. Представляется весьма вероятным, что фаги развились для спонтанных, подчиняющихся стохастическим закономерностям индукций – для того, чтобы пользоваться преимуществами литической репликации, но не подвергать опасности генетически однородную популяцию профагов, дремлющих в хромосомах их медленно делящихся хозяев.

Убить победителя

В водных экосистемах наши хвостатые вирусы выступают основными игроками; у большинства из них мелкие геномы, и сами они являются вирулентными литическими фагами, которые инфицируют и тут же лизируют пораженную клетку. Созданные на голом каркасе небольшого генома, эти фаги несут лишь ту информацию, которая важна для проникновения в клетку и овладения ею, для дупликации своего генетического материала и уничтожения клетки-хозяина. Этот убийственный цикл происходит в наших океанах повсеместно, днем и ночью. Гибель клеток-хозяев приводит к высвобождению питательных веществ обратно в окружающую среду и делает их снова доступными у основания или на нижних звеньях пищевой цепи, включая и сами клетки-хозяева фага. Было подсчитано, что инфекция литическими фагами убивает практически столько же прокариот, что и питающиеся ими реснитчатые и жгутиковые простейшие; каждый день фаги уничтожают до 20 % микробной биомассы мирового океана (Rohwer, 2009; Suttle, 2007). Таким образом, фаги являются чрезвычайно важным компонентом сохранения равновесия морских экосистем, перерабатывая питательные вещества, предохраняя органические вещества от исключения из пищевой цепи и делая их вновь доступными для низших форм жизни.

Инфицирование фагами оказывает сильное влияние на численность популяций прокариот в этих природных ареалах. Высокая смертность в популяциях клеток-хозяев часто сочетается с массированным инфицированием их фагами. Здоровые растущие популяции прокариот представляют собой самую плодородную почву для хищников-фагов. Высокая плотность интенсивно делящихся клеток-хозяев благоприятствует быстрому повторению циклов литической репликации фагов. Такая стратегия фагов была названа: «Убить победителя» (Short, 2012). Эпидемическое уничтожение доминирующих видов прокариот приводит к катастрофическому сокращению численности популяции, что освобождает место для конкурирующих одноклеточных организмов, которые начинают размножаться вместо погибших бактерий. В свою очередь, эта популяция тоже падет жертвой вирусных хищников. Таким образом, устанавливается цикл экспансии бактериальных популяций, сменяющейся их уничтожением вирусами. Эти циклы позволяют множеству конкурирующих видов прокариот сосуществовать в одном ареале обитания и поддерживать разнообразие видов, что очень важно для сохранения целостности глобальных экосистем.

Экологические последствия эпидемии убийства победителей вирусами могут быть очень далеко идущими, и пример этого мы видим в Восточно-Африканской зоне разломов; эта, расположенная в Кении область отличается невероятной красотой. Вулканы, многие из которых до сих пор действуют, возвышаются над плодородными равнинами, где водятся черные носороги, львы, жирафы, куду и другие виды экзотических животных. В долине жизнь поддерживается цепью из более чем пятидесяти озер. Два озера – Богория и Накуру – являются домом для 75 % всех существующих в мире карликовых фламинго, вида, который находится под угрозой исчезновения и внесен в Красную книгу Международного союза охраны природы. Сотни тысяч розовых фламинго, обитающих в этих озерах, представляют собой незабываемое зрелище. Богорию и Накуру называют «натриевыми озерами» из-за высокого содержания соли в их воде. Вода лишена стока и поэтому имеет щелочную реакцию. Вода этих озер окрашена в сине-зеленый цвет из-за большой концентрации цианобактерий, большая часть которых принадлежит виду Arthrospira fusiformis. Этот фотосинтезирующий пикопланктон является основным источником корма для карликовых фламинго. За прошедшие сорок лет численность прилетающих на озеро птиц радикально уменьшилось вследствие их таинственной гибели. Такие причины, как загрязнение воды тяжелыми металлами и пестицидами или отравление цианобактериями и инфекционные заболевания, могли усугубиться недостатком пищи. Повышение частоты гибели птиц на протяжении последних двух десятилетий сопровождается колебаниями их численности – от одной тысячи в некоторые годы до полумиллиона особей в другие. Изучение биомассы планктона в трех соленых озерах, включая Богорию и Накуру, позволило заподозрить возможную причину, так как были выявлены пятидесятикратные колебания биомассы, причем надиры величин совпадали с уменьшением численности фламинго. Интересно, что популяции A. fusiformis расцветали, размножались и доминировали, а затем наступал момент, когда численность этих цианобактерий резко сокращалась, и они уступали место бактериям вида Anabaenopsis или конкурирующему пикопланктонному хлорофиту Piocystis salinarum (Lothar, Kiplagat, 2010). Основная идея заключалась в том, что отсутствие питательных микроорганизмов делало популяцию более чувствительной к загрязняющим веществам или патогенным микроорганизмам и что в данном случае речь шла о происходивших в озере качественных и экологических изменениях. Тем не менее оставалась неясной причина колебаний численности пикопланктона.

В 2013 году группа ученых под руководством Михаэля Шагерля из Венского университета опубликовала результаты своих исследований, в которых к проблеме подошли с другой стороны (Peduzzi et al., 2014). Ученые понимали, что вирусы, скорее всего, являются преобладающими биологическими сущностями в озерах Восточно-Африканской зоны разломов и, так же как в других водных экосистемах, могут быть важной причиной смертности в популяциях цианобактерий. Ученые решили отследить количество и объем видов цианобактерий, служащих главным источником питания для карликовых фламинго, а также оценить количество поражающих цианобактерии цианофагов. Примечательно, что ученым удалось зафиксировать число вирусов, рекордное для всех исследованных до этого экосистем: величина оказалась просто невиданной – 7 × 109 вирусов на 1 миллилитр озерной воды. Когда ученые измерили плотность популяции цианобактерий A. fusiformis в озерной воде в разные моменты времени, им удалось связать уменьшение плотности популяций планктона с микроскопически видимыми признаками поражения цианофагами. Неудивительно, что такие периоды характеризовались уменьшением численности популяций фламинго. Стало ясно, что эти периодически повторявшиеся уничтожения A. fusiformis

1
...