зрения. Но как только вы по-настоящему поймете нечто и сможете увидеть это как единое целое, скорее всего, произойдет очень сильное ментальное сжатие. Вы можете отправить эту информацию в архив, а при необходимости быстро и полностью восстановить и использовать ее всего лишь за один шаг в рамках другого ментального процесса. Озарение, которым сопровождается такое сжатие, — одна из истинных радостей математики (Thurston, 1990).
Многие ученики не считают, что математика дарит «истинную радость» — отчасти потому, что в их мозге сжатия не происходит. Мозг способен сжимать только концепции, но не правила и методы. Следовательно, у учеников, которые не мыслят концептуально, а воспринимают математику как список правил, подлежащих запоминанию, сжатия не происходит, и их мозг не может упорядочивать концепции и архивировать их, а пытается хранить длинные списки методов и правил. Именно поэтому важно воспитать концептуальный подход к математике — основу математического мышления.
Как насчет фактов?
Многие убеждены, что невозможно постоянно размышлять над математикой на концептуальном уровне, поскольку существует мног