Читать книгу «Машущий полёт. Мифы и реальность» онлайн полностью📖 — Игоря Азарьева — MyBook.

ОБЩИЕ пРОБЛЕМЫ МАШУЩЕГО ПОЛЕТА

Когда человек взглянул на небо с целью его освоения, то первой мыслью было: научиться летать как птица. Первые энтузиасты пытались сделать крылья, подобные крыльям птицы, и полететь как птица. Все эти попытки оказались неудачными, а специальные исследования показали, что иными они не могли быть.

Сначала определимся, что же означает слово махолет.

Махолет – это пилотируемый летательный аппарат, у которого подъемная сила и тяга возникает за счет взмахов крыльями.

Итак, машущий полет с человеком на борту – реальность или беспочвенная фантазия. Из множества проблем, связанних с осуществлением такого полета, рассмотрим основные:

1. Почему?

2. Каким способом?

3. Какие преимущества?

4. Для кого?

Первая реакция обычного гражданина Украины при этом слове: только махолета нам и не хватает. Конечно, для страны, находящейся в таком сложном положении как Украина, даже слово махолет может вызывать недоумение и раздражение. Чтобы занять достойное место в мире Украина должна предложить не только сало или продукцию черной металлургии, но, прежде всего, наукоемкую продукцию, среди которой махолет может найти свое место.

Что нам стоит махолет построить? Вот уже не одну сотню лет энтузиасты пытаются построить махолет и все напрасно. Махолет оказался крепким орешком. Исследования показали, что для практического создания махолета необходимо проведение специальных научных исследований и разработка новейших методик и процессов на базе современных достижений науки и техники. В сарае махолет не построишь, для этого необходимы современные компьютеры, станки и оборудование. Создатели махолета должны уметь генерировать новые идеи на базе высочайшего профессионального опыта работ в авиационной отрасли.

Например, для проведения аэродинамических расчетных исследований потребовалось разработать принципиально новую математическую модель летательного аппарата и создать пакет программ, позволяющий моделировать полет махолета с помощью компьютера.

Энтузиасты машущего полета верят в необычайную экономичность этого летательного аппарата. Специальные исследования этой проблемы, проведенные автором, показали, что махолет будет уступать по экономичности самолету с похожими параметрами почти в два раза, будет иметь небольшую скорость полета, высокую стоимость. Полет на махолете будет напоминать поездку на лошади, мчащейся галопом. Техника пилотирования махолета достаточно сложная, для разбега потребуется длинная взлетно-посадочная полоса и т. д.

Итак, топлива не сэкономишь, мешок картошки из глубинки на базар не привезешь, и даже девушку не покатаешь. Кому он такой нужен? Сегодня в мире сотни тысяч летательных аппаратов бороздят воздушное пространство в любительских, спортивных целях или для удовольствия, не принося никакой прибыли их владельцам. Махолет – это необычно, это интересно, это увлекательно, значит это нужно.

Кому нужно? Прежде всего населению высокоразвитых стран с высоким уровнем жизни, таким, как США, Западная Европа, Япония.

Наука и техника развиваются по своим законам, и остановить прогресс невозможно. Большинство энтузиастов машущего полета пытаются копировать достижения Природы для создания махолета, поэтому рассмотрим проблемы использования бионики в авиации.

Бионика в авиации

100 лет назад самолет братьев Райт совершил свой первый полет. С тех пор авиация достигла замечательных успехов. Человек создал разнообразные летательные аппараты от дирижабля до космических ракет, от планеров до межконтинентальных лайнеров.

Но одна мечта человечества осталась неосуществленной – это создание пилотируемого махолета, который мог бы летать подобно птице без пропеллера, создавая подъемную силу и тягу за счет взмахов крыльями.

Столько сил было потрачено энтузиастами во всем мире и все безрезультатно. Махолет оказался крепким орешком. Но птицы летают, и делают это превосходно.

В чем же дело?

Читая многочисленную литературу по проблемам машущего полета, я хотел бы высказать следующую крамольную мысль: изучение механизмов и принципов полета насекомых и птиц конечно интересно, но ничего не дает для создания махолета.

Дело в том, что у Природы и Человека разные элементная база и технологические возможности.

В распоряжении Природы имеется ограниченный набор элементов: живые клетки, способные выполнять различные функциональные обязанности, кости, сухожилия для сбора и передачи усилий от мускульных клеток к костям, суставы, обеспечивающие взаимную подвижность, нервная система, способная управлять каждой клеткой организма. Природа освоила чрезвычайно экономичные процессы превращения и использования энергии. Используя метод проб и ошибок с помощью законов генетики и естественного отбора, за миллионы лет Природа на своей элементной базе создала удивительные формы живых существ, превосходно приспособленных к самым различным, в том числе и экстремальным, условиям жизни.

У человека совершенно иная элементная база. Это легкие и прочные материалы, совершенные механизмы, устройства для использования и превращения энергии, быстро развивающиеся информационные системы и, это главное, накапливающийся опыт и знания, доступные каждому участнику человеческого сообщества.

Кроме того, Человек использует для своего развития метод целенаправленного перебора вариантов на базе предыдущего опыта и накопленных знаний, позволяющий сократить время разработок до минимума.

Величайшее изобретение человечества колесо и укрощенный огонь Природа на своей элементной базе создать, в принципе, не могла.

Сравнивая элементные базы Человека и Природы, можно отметить, что Человек имеет в своем распоряжении гораздо более прочные материалы, более совершенные механизмы, более мощные энергетические установки. Все это позволило Человеку создать летательные аппараты, превосходящие по взлетному весу, скорости, экономичности и другим параметрам любое создание Природы.

Кроме того, у Человека и летающих существ различные условия существования, поэтому, даже тщательно изучив эти механизмы, человек не сможет ими воспользоваться. На это есть несколько причин принципиального характера.

Учитывая законы аэродинамики, все летательные аппараты и летающие существа можно разделить на три группы:

– насекомые;

– птицы и модели летательных аппаратов;

– махолеты и самолеты.

Аэродинамический параметр, который разделяет эти группы, это число Рейнольдса Re, которое определяется соотношением между силами инерции и силами вязкости, возникающими в обтекающем поверхность потоке воздуха.

Re=V*L / n, где V – скорость потока;

L – хорда крыла;

n – кинематический коэффициент вязкости воздуха.

Я не буду вдаваться в подробности, надеюсь читатель познал основы аэродинамики крыла, и только отмечу, что величина числа Re определяет характер течения воздушного потока над поверхностью крыла. На малых числах Re преобладают силы вязкости и течение ламинарное, на больших – силы инерции и течение турбулентное. Критическое значение числа Re, разделяющее две основные области характеристик потока, составляет для профиля 120 000÷160 000.

Ниже приведены числа Re для различных аппаратов и существ.

Авиация

Транспортные самолеты Re = 1́10и Re> Reкр

Легкие самолеты Re = (2÷5) ́10и Re> Reкр

Махолет Re = 1.5́10и Re> Reкр

Птицы и модели

Модель махолета Re = 50000÷80000 и Re <Reкр

Парящий альбатрос Re = 200 000 и Re> Reкр

Чайка Re = 100 000 и Re <Reкр

Насекомые

Бабочка в планирующем полете Re= 3000÷7 000 и Re <Reкр

Мелкие комары и мушки Re = 20 ‒1000 и Re <Reкр

Число Re в значительной мере определяет форму несущей поверхности. При больших числах Re увеличение несущих свойств и уменьшение сопротивления требует обеспечения плавности обводов профиля.

Птицы летают в той области малых скоростей и размеров, где очень существенны силы вязкости, и которая принципиально не может быть использована человеком. Кроме того, частота маха птиц находится в пределах от 1гц у больших птиц до 200гц у маленьких. В этих условиях влияние нестационарности становится существенным. Самая большая птица – альбатрос летает на сверхкритическом числе Re, и его крыло напоминает самолетное.

Крылья птиц имеют механизмы адаптации к обтекающему их потоку. У основания каждого перышка есть рецепторы, чувствительные к местному потоку, которые помогают головному мозгу, выполняющему функции автопилота, адаптировать крыло и оперение к местному набегающему потоку. Каждым своим перышком птица чувствует поток. Создать такую чувствительную поверхность человеку вряд ли удастся.

Аэродинамика насекомых характерна малыми числами Re и высокой частотой махов. Для этой группы влияние нестационарности на аэродинамические характеристики становится определяющим. Аэродинамика в этой области практически не изучена. Геометрическая форма несущей поверхности насекомых оптимизирована на малые числа Re, где превалируют силы вязкости, и имеет форму пластин. Если увеличить крыло самого совершенного насекомого-летуна до размеров, необходимых для поддержания человека в воздухе, то такое крыло будет обтекаться воздушным потоком с большими сверхкритическими числами Re, где превалируют силы инерции. Такое крыло окажется совершенно непригодным для полета человека.

Механическое перенесение особенностей аэродинамической компоновки живых существ, летающих в области докритических чисел Re, на летательные аппараты, использующие область сверхкритических чисел Re, обречено на неудачу. Никакая муха или птица не может быть прототипом для конструирования летательного аппарата, в том числе, и махолета.

Аэродинамика махолетов характерна большими сверхкритическими числами Re и небольшой частотой маха, менее 1Гц. Влияние нестационарности на аэродинамику не такое большое, и ее можно не учитывать при оценочных расчетах. Аэродинамика для этой группы изучена хорошо, и современный уровень знаний позволяет достаточно точно моделировать процессы и производить расчеты характеристик.

Сравнительная оценка КПД махолёта, самолёта и птицы

Большинство энтузиастов машущего полета уверено в высоком кпд махолета и птиц. Сделаем анализ этой проблемы и сделаем сравнительную оценку кпд превращения энергии топлива или пищи в энергию движения для самолета, махолета и птицы.

Проблема определения кпд махолета есть более сложная, чем для самолета. Дело в том, что кпд изменяется по фазам маха и зависит от характеристик привода. Еще более сложная задача сравнивать кпд самолета, махолета и птицы. Можно высказать некоторые общие соображения.

В природе постоянно происходят процессы превращения энергии, поэтому в полной постановке анализ энергетического совершенства летательных аппаратов и живых существ является чрезвычайно сложным. Рассмотрим более узкую проблему превращения энергии последних звеньев цепочки энергозатрат птицы, самолета и махолета начиная с этапа потребленной пищи у птицы и заправленными топливом баками самолета и махолета.

Общий кпд превращения энергии топлива в энергию движения самолета и махолета можно разделить на три составляющие.

– кпд превращения химической энергии топлива в механическую энергию вращающегося вала двигателя,

– кпд редуктора, понижающего обороты коленвала,

– кпд движителя (у самолета – это воздушный винт, у махолета -крылья), который превращает энергию, вращающегося вала редуктора в энергию движения летательного аппарата.

Самолеты и махолеты используют одни и те же двигатели, поэтому кпд превращения химической энергии в механическую энергию вращающегося вала двигателя одинаков для рассматриваемых летательных аппаратов.

Кпд поршневого двухтактного двигателя, устанавливаемого на легких самолетах, составляет, примерно, hдв=0.25.

Кпд воздушного винта легкого самолета равен hв=0.75.

Кроме того, часть энергии теряется в редукторе. Одноступенчатый шестеренчатый редуктор имеет кпд

hр=0.98.

Таким образом, кпд превращения механической энергии двигателя в энергию движения самолета равен

h = hр «hв = 0.98‘0.75=0.73,

а общий коэффициент превращения химической энергии топлива в энергию движения легкомоторного самолета с двухтактным двигателем составляет

h = hдв‘hр «hв = 0.25‘0.98‘0.75=0.18.

А если учесть затраты энергии на добычу нефти, ее переработку и транспортировку, то коэффициент использования химической энергии нефти составит менее 0.1. Человек распоряжается запасенной для него энергией нерационально.

Махолет.

Кпд превращения химической энергии в механическую энергию вращающегося вала двигателя такой же, как у самолета.

У махолета сложный и энергоемкий редуктор, необходимый для преобразования быстрого вращения вала двигателя n=75 об/с в медленные махи крыльями n=0.7 мах/с. Для махолета «Дедал-1», проект которого разработан фирмой «АНКОМ», кпд редуктора составляет hр=0.92. В будущем, возможно, появятся силовые установки, не требующие редуктора, что приведет к уменьшению потерь.

Рассмотрим кпд превращения энергии поступающей к машущему крылу в энергию тяги. При махе все параметры изменяются в зависимости от фазы маха, поэтому сложно определить кпд. Сделаем качественный анализ, для этого рассмотрим потери энергии при махе крыльями вниз и вверх.

При махе вниз наиболее эффективно используется энергия двигателя: вектор полной аэродинамической силы крыла наклонен вперед, и его проекции создают подъемную силу и тягу. В этой фазе маха кпд максимален, и можно ожидать, что он близок к кпд самолета.

При махе вверх для обеспечения необходимой подъемной силы угол атаки на несущих поверхностях крыльев положителен, а вектор полной аэродинамической силы наклонен назад. При этом проекция полного вектора на горизонтальную ось направлена назад, создавая сопротивление. Для компенсации этого сопротивления концевые отсеки должны создавать тягу, для чего угол атаки должен быть отрицательным. Подъемная сила этих отсеков направлена вниз и для компенсации потерь подъемной силы нагрузка на несущие отсеки крыла должна быть увеличена.

Полностью все потери тяги и подъемной силы в течении цикла маха можно компенсировать за счет увеличения потребной мощности двигателя, поэтому в этой фазе кпд меньше, чем у самолета.

При использовании двух пар крыльев можно ожидать некоторое увеличение кпд, однако, это будет связано со значительным усложнением конструкции махолета и другими потерями, поэтому здесь не рассматривается.

Кроме того, часть энергии тратится на преодоление моментов инерции при разгоне и торможении крыльев при махе (у самолета этого нет), что также снижает общий кпд махолета.

Можно предположить, что коэффициент превращения механической энергии маха крыльями в энергию движения составит не более hм=0.6.

Таким образом, кпд превращения энергии вращения вала двигателя в энергию движения у махолета равен

hр «hм=0.65 * 0.6=0.39,

и общий кпд превращения энергии топлива в энергию движения махолета равен

hдв * hр «hм=0.25 * 0.65 * 0.6=0.1.

Таким образом, качественная оценка показывает, кпд махолета будет почти в два раза меньше, чем самолета, так что не оправдываются надежды энтузиастов машущего полета на высокий кпд махолета.

Теперь рассмотрим кпд птицы.

Птица в полете совершает махи крыльями, используя биохимическую энергию, которую получил ее организм, усвоив пищу, в механическую энергию маха крыльями. Кпд превращения биологической энергии определить достаточно сложно, можно высказать только некоторые качественные оценки, не претендующие на большую точность. Меня интересует порядок величин.

Начнем рассматривать процесс превращения энергии, начиная с того момента, когда птичка поклевала зернышки или съела червяка. Энергию употребляемой пищи нельзя измерить в калориях путем сжигания пищи. Организм животного (и человека) – это не топка паровоза, в нем происходят сложные биохимические процессы, которые позволяют более полно использовать имеющуюся в пище энергию. Часть энергии птица расходует на процесс переваривания пищи, на поддержания своей жизнедеятельности и на регулирование температуры тела. Для оценочного расчета можно принять, что, примерно, 25% энергии пищи расходуется на эти цели. Следует заметить, что эта цифра нуждается в уточнении, и автор будет благодарен тем, кто сможет привести более точные и обоснованные данные.

Рассмотрим кпд превращения энергии маха птицы в энергию движения. Занимаясь параметрическими исследованиями различных вариантов компоновки махолета, я пришел к выводу, что крыло птицы выполняет функции создания тяги и подъемной силы менее оптимально, чем может это делать крыло махолета.