Функции гиппокампа:
1. Формирование воспоминаний. Гиппокамп один из главных центров, отвечающих за формирование долговременной памяти. Он принимает участие в процессах консолидации памяти, преобразуя кратковременные воспоминания в долговременные.
Случай пациента Г. М… Генри Молисон (1926–2008), известный также как «пациент Г.M.», является одним из самых известных клинических случаев в истории нейронауки. Его история сыграла ключевую роль в понимании функций гиппокампа. Генри Молисон страдал тяжелой формой эпилепсии, которая началась после травмы головы в детстве. В 1953 году, когда ему было 27 лет, в попытке излечить эпилепсию, нейрохирург Уильям Сковилл провел операцию, в ходе которой удалил большие участки медиальной височной доли, включая большую часть гиппокампа с обеих сторон. После операции Генри страдал тяжелой антероградной амнезией (не мог формировать новые воспоминания). Он помнил события и факты, произошедшие до операции, но не мог запоминать новую информацию после. Тем не менее, его кратковременная память и способность к обучению некоторым моторным задачам (процедурная память) оставались неповрежденными.
2. Пространственная ориентация. Гиппокамп играет ключевую роль в навигации и пространственной ориентации. Это подтверждается наличием «нейронов места».
В 2014 году Нобелевская премия по физиологии была присуждена за открытие «нейронов места» (GPS-система мозга). Премию разделили Джон О’Киф, Май-Бритт Мозер и Эдвард Мозер. Джон О’Киф в 1971 году открыл «нейроны места» в гиппокампе крыс. Он обнаружил, что определенные клетки активируются, когда животное находится в конкретной области окружающего пространства. Эти клетки помогают формировать когнитивную карту местности. Май-Бритт и Эдвард Мозеры в 2005 году открыли другой тип нейронов, которые назвали «клетками координатной сетки», в энториальной коре крыс. Эти клетки генерируют координатную сетку для точного позиционирования и навигации в пространстве.
3. Временная организация воспоминаний. Гиппокамп участвует в связывании отдельных событий во временные последовательности, что позволяет не только запоминать отдельные моменты, но и устанавливать между ними причинно-следственные связи.
4. Контекст воспоминаний. Гиппокамп помогает включать контекст в воспоминания, что позволяет отличать, одно и то же событие, происходящее в разных местах или в разное время. Это способствует более точному и детальному запоминанию информации.
5. Участие в процессах планирования, переключения между задачами и функционировании рабочей памяти. Исследования показывают, что гиппокамп участвует в планировании и принятии решений, особенно когда необходимо переключаться между задачами или планировать будущую деятельность.
6. Гиппокамп и эмоциональная память. Хотя гиппокамп не является основной эмоциональной структурой, он связан с лимбической системой и участвует в регуляции эмоций, особенно в контексте эмоциональных воспоминаний.
7. Гиппокамп и стресс. Гиппокамп вовлечен в регуляцию стрессовой реакции, через взаимодействие с гипоталамусом и надпочечниками. Это помогает адаптироваться к стрессовым ситуациям и влияет на выработку гормонов стресса. Продолжительное воздействие стресса может привести к уменьшению объема гиппокампа. Это связано с уменьшением числа дендритных отростков и потерей синапсов. Изменения в гиппокампе могут привести к нарушениям памяти и процесса обучения. Стресс также может снизить нейрогенез в гиппокампе. Несмотря на воздействие стресса, гиппокамп обладает возможностями для восстановления. После уменьшения стресса уровень кортикостероидов может нормализоваться, и гиппокамп может частично восстановить свою структуру и функции.
Нарушения памяти (амнезии). Все нарушения памяти делятся на:
– Гипомнезии – ослабление памяти, которые могут происходить с возрастом или в результате какого-либо мозгового заболевания, например, склероза мозговых сосудов или эпилепсии.
– Гипермнезии – аномальное обострение памяти по сравнению с нормальными показателями, встречающееся гораздо реже. Люди с этим состоянием с большим трудом забывают события.
– Парамнезии – ложные или искаженные воспоминания, а также смешение настоящего и прошлого, реального и воображаемого.
Также выделяют детскую (инфантильную) амнезию – это невозможность вспомнить события младенчества и раннего детства (до 4–5 лет), характерная для всех людей. В настоящие время нейрофизиологические и психологические механизмы данного явления до конца не изучены. Считается, что в раннем детстве нейронные сети в гиппокампе и их связи с другими областями мозга, такими как префронтальная кора и другие части лимбической системы, еще недостаточно развиты, что может мешать формированию долговременных воспоминаний.
Нейропластичность представляет собой совокупность различных процессов ремоделирования синаптических связей, направленных на оптимизацию функционирования нейрональных сетей. Нейропластичность описывает способность мозга адаптироваться и изменяться в ответ на новый опыт, обучение, активность или при травмах.
Нейропластичность выделяют на нескольких уровнях:
1. Синаптическая пластичность включает изменения в синаптических связях между нейронами. Может усиливать существующие синапсы или формировать новые в ответ на обучение и опыт. Это явление лежит в основе таких процессов как обучение и запоминание. Данный вид пластичности работает по принципу «используй или потеряй»: активно используемые нейронные пути становятся сильнее, в то время как редко используемые пути ослабевают и могут атрофироваться.
2. Структурная пластичность. В мозге возможно изменение связей и функций структур, включая рост новых нейронов (нейрогенез), новых дендритов и образование новых синаптических связей. К примеру в зонах, активно используемых при выполнении определенных задач или навыков, могут формироваться новые нейронные пути. Это включает рост новых нейронов в определенных областях мозга. Структурная пластичность позволяет мозгу адаптироваться к новым обстоятельствам и восстанавливаться после повреждений.
3. Функциональная пластичность – способность мозга перераспределить функции с поврежденных участков на здоровые. Например, после инсульта некоторые неповрежденные области мозга могут взять на себя функции утраченных участков, тем самым обеспечивая более полноценное восстановление жизнедеятельности человека.
Также можно говорить о комплексной пластичности как о способности мозга адаптироваться к потере функции или повреждению, при которой мозг развивает новые способы выполнения задач. В случае потери зрения, особенно в раннем возрасте, другие части мозга могут начать выполнять функции, которые обычно связаны со зрительной корой. Исследования показали, что зрительная кора у слепых с детства людей может активироваться в ответ на тактильные или аудиальные стимулы, что подтверждает идею о возможности использования этих областей мозга для обработки информации из других сенсорных систем.
Факторы, влияющие на нейропластичность: возраст (наиболее высокая нейропластичность у детей, что позволяет им легко учиться и адаптироваться, но с возрастом этот процесс замедляется), обучение и опыт, физическая активность, диета и питание (употребление продуктов содержащих омега-3 жирные кислоты, ягоды, куркуму, зеленые листовые овощи, орехи, темный шоколад могут способствовать поддержанию и усилению нейропластичности), социальные взаимодействия и эмоциональное состояние (стресс может ослаблять пластичность, тогда как положительные социальные взаимодействия и эмоции могут её усиливать). Нейропластичность делает мозг чрезвычайно чувствительным к обучению и опыту. Образовательные и обучающие программы, особенно те, которые начинаются в раннем возрасте и продолжаются во взрослом состоянии, могут стимулировать нейронную активность и способствовать когнитивному развитию.
В экспериментальных исследованиях на животных показано, что во взрослом возрасте новые нейроны появляются преимущественно в зубчатой извилине гиппокампа, в области обонятельной луковицы и в неокортексе. Гиппокампальный нейрогенез у взрослых играет важную роль в обучении и запоминании. На нейрогенез существенное влияние оказывают BDNF и GDNF.
BDNF (Мозговой нейротрофический фактор) – это один из белков, связанных с нейропластичностью мозга, относится к семейству нейротрофинов – белков, которые способствуют выживанию, росту и дифференцировке нейронов в нервной системе. BDNF играет ключевую роль в регуляции синаптической пластичности, что важно для обучения и формирования памяти, а также поддерживает выживаемость существующих нейронов и стимулирует рост и дифференцировку новых нервных клеток и синапсов. Этот фактор активно участвует в процессах, связанных с долговременной потенциацией.
GDNF (Глиальный нейротрофический фактор) – белок, который играет важную роль в выживании и развитии глиальных клеток, принадлежит к семейству факторов роста, которые влияют на развитие, поддержание и регенерацию нервных клеток. Основные аспекты действия GDNF – поддержка выживаемости нейронов, особенно тех, которые подвержены риску дегенерации в условиях нейродегенеративных заболеваний. GDNF способствует росту и регенерации аксонов, что особенно важно после нервных повреждений или в ходе лечения заболеваний нервной системы. Также он может влиять на синаптическую пластичность, способствуя укреплению и формированию синаптических связей. GDNF обеспечивает нейропротективный эффект, защищая нейроны от различных форм нейротоксичности.
1. Бэддели, А. Ваша память: Рук. по тренировке и развитию – М.: ЭКСМО-Пресс, 2001. – 319 с. ISBN 5–04–008446–3.
2. Величковский, Б. Б. Рабочая память человека: структура и механизмы. – М.: Когито-Центр, 2015. – 246 с. ISBN 978–5–89353–467–2.
О проекте
О подписке