Нейроны сильно различаются по функционалу, форме и связям, в которые они вступают. Они могут выполнять различные «должностные обязанности», такие как обработка информации, внутренние стимулы, управление мышечными действиями и прочие. Нервные клетки являются неотъемлемым элементом наших пяти чувств. Они бывают разных форм и размеров. Некоторые из самых маленьких нейронов имеют клеточные тела шириной всего четыре микрона, а самые большие нейроны – сто микрон. Напомню, что один микрон равен одной тысячной миллиметра.
Функционал нейрона включает три основных пункта:
• получить информацию;
• обработать приходящую информацию и определить, стоит ли она того, чтобы ее передавать или нет;
• после оценки полученной информации отправить ее целевым нейронам, мышцам, железам или другим органам.
Существует три основных типа нейронов:
1. Сенсорные, или чувствительные, нейроны. Информацию о том, что происходит внутри и снаружи нашего тела, мы можем получить именно с их помощью. Они передают сигналы от органов чувств в спинной и головной мозг. Например, если мы прикоснемся к горячей поверхности, органы чувств на кончиках наших пальцев передадут в мозг сообщение о том, что эта поверхность очень горячая.
2. Двигательные, или моторные, нейроны. К ним поступает информация от других нейронов, и они передают сообщение нашим мышцам, органам и железам, которые затем действуют на основе полученной информации. Двигательные нейроны транслируют сигналы от мозга к мышцам. Когда прикоснетесь к горячей поверхности, они заставят отдернуть руку.
3. Ретрансляционные нейроны. Также известны как интернейроны. Они находятся только в центральной нервной системе и передают сообщения между сенсорными или моторными нейронами и центральной нервной системой.
А из чего состоят сами нейроны?
Дендритами называют не только отростки нервных клеток. В геологии дендритами именуют невероятно красивые кристаллические образования, которые разрастаются в разные стороны подобно дереву, тянущемуся к солнечному свету
Нейроны, являясь клеткой нервной системы, построены по такому же принципу, как и другие клетки организма, но отличаются от них тем, что:
1. Имеют особенные клеточные участки, называемые дендритами и аксонами. Дендриты передают электрические сигналы в тело клетки, а аксоны забирают информацию из тела клетки.
2. Взаимодействуют друг с другом с помощью электрохимического процесса.
3. Содержат синапсы и химические вещества.
Кроме нейронов в центральной нервной системе (ЦНС) есть глиальные клетки. Глия – это нервные клетки различной формы, которые заполняют пространства между нейронами и кровеносными сосудами. Они – опорные клетки нейронов. Одним из видов глиальных клеток является астроцит. Звездообразная форма астроцита позволяет контактировать с большим количеством синапсов.
Что такое глион?
В 1848 году Рудольф Вирхов (1821–1902) рассмотрел в микроскоп среди нейронов особые клетки, поддерживающие и скрепляющие нервную ткань, и назвал их глией. В переводе с древнегреческого это означает клей. Выдающийся врач и ученый пользовался таким авторитетом, что был избран в прусский парламент, где основал прогрессистскую партию
Химические синапсы используют химические мессенджеры – нейромедиаторы – для передачи сигналов. Они обнаруживаются по всему телу. Особенно много их в центральной нервной системе и головном мозге. Типичный химический синапс состоит из трех частей:
• Досинаптический терминал (обычно находится на аксоне) – это своеобразный зал ожидания. Он высвобождает нейромедиаторы в синаптическую щель, как пассажиров при объявлении о посадке в самолет. Этот терминал является первой частью передачи сигнала.
• Синаптическая щель – это участок посередине двух мембран, своеобразный рукав, телетрап для перехода пассажира (нейромедиатора) из аэропорта в лайнер.
• Синаптическая мембрана находится на дендрите следующего нейрона. Она поглощает нейромедиаторы в нейрон, принимающий сигнал. А это уже сам лайнер, в котором размещаются пассажиры.
Синапсы первого типа – самые распространенные в человеческом мозге. Они возбуждают (запускают) следующий нейрон, а синапсы второго типа тормозят следующий нейрон.
А какая все-таки польза от этих знаний? – справедливо спросите вы. Эта польза связана с возможностями сохранения физического и психического здоровья. Самое время рассказать о том, как исследуют электрическую активность мозга и каким образом это помогает врачам своевременно распознавать нарушения его работы.
Итак, работа мозга и передача сигналов нейронами сопровождается электрической и химической активностью. Электрическая активность мозга мала, ее можно зарегистрировать только при помощи специальных чувствительных приборов и усилителей, которые называют электроэнцефалографами. В результате получается электроэнцефалограмма (ЭЭГ) – набор сложных кривых линий, состоящий из волн различной частоты. В зависимости от частоты различают волны, обозначаемые греческими буквами «альфа», «бета», «дельта» и «тета». Альфа-ритм свойствен спокойному состоянию, готовности к работе; его основной источник – затылочная область. Бета-ритм – более быстрый; в состоянии покоя он отмечается в лобных долях, а при активной деятельности охватывает всю поверхность мозга. Медленные дельта-ритм и тета-ритм регистрируются во время сна у взрослых людей и во время бодрствования у совсем маленьких детей; появление этих ритмов во время бодрствования у взрослых является признаком болезни.
Оценку активности головного мозга проводят в темной тихой комнате, защищенной от электромагнитного излучения. Пациент располагается полулежа и старается максимально расслабиться, закрыв глаза. Для оценки состояния мозга при различных формах нарушений сна, отставании в развитии, после инсультов и черепно-мозговых травм используют ЭЭГ. Исследование также помогает отличить обмороки «сердечного» происхождения от «мозговых». Методика ЭЭГ эффективна и безопасна.
Остроумие ученого
Политические взгляды Вирхова довели его до дуэли с канцлером Отто фон Бисмарком! Поединок закончился весьма неожиданно. Когда к Вирхову пришли секунданты, он выбрал в качестве оружия… две одинаковые палки колбасы. Он утверждал, что одна из них заражена смертоносными бациллами. «Его превосходительство может оказать мне честь, выбрав и съев одну из них. Я же съем другую!» – сказал Вирхов секундантам. В результате канцлер отказался от дуэли
Чем занимаются астроциты?
Астроциты, составляющие 25–30 % клеток мозга, покрывают его бесчисленными отростками. Это позволяет каждому астроциту «прослушивать» десятки тысяч синапсов между нейронами
Термин «нейромедиатор» происходит от латинских слов neuro – «относящийся к нервной системе» и mediator – «посредник». В англоязычной литературе часто используют термин «нейротрансмиттер»
Андреас Везалий – выдающийся специалист по анатомии, изучавший в том числе и строение мозга
Рудольф Вирхов
Чарльз Скотт Шеррингтон
Схема синапса – связей между нейронами
Обычно счастье – это побочный эффект другой деятельности.
Олдос Хаксли
Без слаженной работы отделов нервной системы невозможны ходьба, танцы, занятия спортом и прочее. Все это мы можем выполнять с помощью нейромедиаторов. Как они действуют на наш организм? Поняв это, мы сможем регулировать свои психологические и физиологические состояния – от депрессии до двигательных расстройств.
С чем только не сравнивали человеческий организм: с исправным автомобилем, бульоном, космосом, компьютером, хрупкой вазой… Давайте внесем свой посильный вклад в этот список и сравним человеческий организм с огромной химической лабораторией, в которой есть свои согласованно работающие отделы и департаменты: мышц, сердца, печени и так далее. Реагируя на радостные новости или недобрый взгляд, тесную обувь и чашечку капучино, наш организм отвечает каскадом химических реакций. В результате коктейль из химических веществ и электрических сигналов приводит человека в состояние гнева или радости, эмоционального подъема или стресса. Любая из этих реакций есть результат выработки определенных нейромедиаторов и гормонов. Возможно, ответ на вопрос о том, выработкой каких химических веществ мозг отреагирует на определенную ситуацию, находится в наших руках, точнее, в нашем сознании? Умение оценить и осознать обстановку позволяет нам сделать выбор в пользу того, что мы хотим получить взамен чего-то тревожного и неблагоприятного. Нейроны, синапсы и нейромедиаторы становятся в этом надежными помощниками.
Термин «нейромедиатор» происходит от латинских слов neuro – «относящийся к нервной системе» и mediator – «посредник». В англоязычной литературе часто используют термин «нейротрансмиттер»
Мы помним, когда сигналы проходят через нейрон и достигают его конца, они не могут просто пройти к следующему. Нейрон должен вызвать появление нейромедиаторов, которые затем передают сигналы по синапсам с целью достичь следующего нейрона. Нейромедиатор – это химический мессенджер, который позволяет нервным клеткам взаимодействовать друг с другом. Давайте вспомним, каким образом.
Упаковка молекул нейромедиатора высвобождается из аксона (главный, длинный отросток нейрона) в синапс. Затем эти молекулы улавливаются локаторами – рецепторами дендрита – и таким образом передают свое химическое сообщение. Избыточные молекулы забираются обратно аксоном и перерабатываются. Именно так, именно здесь устанавливается связь между нейромедиаторами и эмоциями, а сообщения отправляются в нервную систему. А теперь самый подходящий момент, чтобы узнать, какие типы нейромедиаторов существуют и как они влияют на наш организм.
3D-модель нейрона
Нейромедиаторы важны как для усиления, так и для балансировки сигналов в мозге и поддержания его нормальной работы. Они помогают управлять автоматическими реакциями – например, дыханием и частотой сокращений сердца. Но у них также есть задачи в области психологии, такие как обучение, управление страхом, удовольствием и даже влюбленностью. Есть несколько типов нейромедиаторов, и каждый из них имеет влияние на разные функции. Какие же это типы и почему важно знать о них?
Нейромедиатор может воздействовать на нейроны одним из трех способов: возбуждать, подавлять или модулировать их. Возбуждающие нейромедиаторы оказывают стимулирующее действие на нейроны. Примеры такого типа – адреналин и норадреналин. Ингибирующие медиаторы имеют противоположный эффект, подавляя активность нейронов. Примеры – эндорфины и гамма-аминомасляная кислота (ГАМК). Модулирующие медиаторы часто называют нейромодуляторами. Это означает, что они могут влиять на большое количество нейронов одновременно, а также воздействовать на эффекты других нейромедиаторов. Примеры – серотонин и дофамин. Какие же задачи решает каждый из медиаторов?
Нейроны в ожидании
На один нейрон приходится от одной тысячи до десяти тысяч синапсов. Основная масса нейронов относительно молчит в течение длительного времени, ожидая, когда они начнут действовать при активации. Но они делают это, чтобы оставаться энергоэффективными
Известно более ста разновидностей нейромедиаторов, но стоит обратить внимание на наиболее важные из них. Начнем с так называемой моноаминовой группы. Эта группа особенно интересна психологам, поскольку ее представители участвуют в таких реакциях, как принятие решений, эмоциональное восприятие, счастье, депрессия и вознаграждение. К моноаминам относят серотонин, адреналин, норадреналин и дофамин.
О проекте
О подписке