Цитаты из книги «Хаос. Создание новой науки» Джеймса Глика📚 — лучшие афоризмы, высказывания и крылатые фразы — MyBook.

Цитаты из книги «Хаос. Создание новой науки»

24 
цитаты

Турбулентность можно сравнить с так называемым белым шумом или с помехами. Мог ли подобный феномен являться результатом простой детерминистской системы уравнений?
21 марта 2023

Поделиться

эпоху, когда господствовали теория относительности Эйнштейна и принцип неопределенности Гейзенберга, оптимизм Лапласа казался просто шутовством; однако многие современные ученые попытались воплотить его мечту. Стремление исследователей XX века – биологов, физиологов, экономистов – разложить свои миры на атомы, подчиняющиеся законам науки, вполне понятно. Во всех этих дисциплинах господствовал детерминизм
2 октября 2025

Поделиться

внезапные скачки мысли. Верующие в хаос – а они иногда действительно называют себя верующими, новообращенными или евангелистами – выдвигают смелые гипотезы о предопределенности и свободе воли, об эволюции и о природе возникновения разума. Они чувствуют, что поворачивают вспять развитие науки, следовавшей по пути редукционизма – анализа систем как совокупностей составляющих их элементарных объектов: кварков, хромосом, нейронов. Они верят, что ищут пути к анализу системы как целого.
28 сентября 2025

Поделиться

В краткосрочной перспективе каждая точка фазового пространства может означать возможное поведение динамической системы.
21 марта 2023

Поделиться

Таким образом, получается, что система в действительности имеет два аттрактора, один из которых является замкнутой петлей, а другой – фиксированной точкой. Каждый из аттракторов имеет собственный «бассейн притяжения» в фазовом пространстве.
21 марта 2023

Поделиться

Ричард Фейнман: «Меня всегда беспокоило, что, согласно физическим законам, как мы понимаем их сегодня, требуется бесконечное число логических операций в вычислительной машине, чтобы определить, какие процессы происходят в сколь угодно малой области пространства за сколь угодно малый промежуток времени. Как может все это уложиться в крохотном пространстве? Почему необходима бесконечная работа логики для понимания того, что произойдет на крохотном участке пространства-времени?»
21 марта 2023

Поделиться

Так ничем не ограниченная природа дает о себе знать в бурных струях водопада или в непредсказуемости человеческого мозга. Но кто сумеет справиться с этим беспощадным и необоримым чудищем, образ которого Ландау использовал для того, чтобы выразить суть турбулентности, и которому присущи бесконечное число колебаний, бесконечное число степеней свободы, бесконечное количество измерений?
21 марта 2023

Поделиться

Даже топологу с самой развитой фантазией нелегко представить себе пространства, обладающие четырьмя, пятью и более измерениями. Однако сложные системы имеют множество независимых переменных, поэтому математикам пришлось смириться с тем, что множество степеней свободы требует фазового пространства, где бесконечно много измерений.
21 марта 2023

Поделиться

Фазовое пространство простой системы вроде маятника – это просто прямоугольник на плоскости. Угол отклонения маятника в заданный момент времени определяет положение точки на оси «восток – запад», а его скорость – на оси «север – юг». Для маятника, периодически качающегося взад и вперед, траектория в фазовом пространстве будет петлей, закручивающейся вновь и вновь, по мере того как система раз за разом проходит через те же состояния. Построение изображений в фазовом пространстве. Традиционные временные ряды (вверху) и траектории в фазовом пространстве (внизу) используются как два вида наглядного отображения одних и тех же данных и визуализации поведения системы в течение длительного периода времени. Первая (слева) система сходится к одной точке фазового пространства, что подразумевает устойчивое равновесие. Вторая периодически повторяет саму себя, образуя циклическую орбиту. Третья обнаруживает периодическое повторение в более сложном, «вальсовом» ритме, демонстрируя цикл с тремя волнами. Четвертая хаотична.
15 марта 2023

Поделиться

Смейл досконально разобрался в пространстве всех возможных состояний осциллятора – пользуясь физическими терминами, в фазовом пространстве. Любое состояние системы, зафиксированное в определенный момент времени, описывается одной точкой фазового пространства. Все данные о положении или скорости системы содержатся в координатах указанной точки. Если состояние системы изменится, точка передвинется в новое место. Поскольку состояние меняется непрерывно, точка вычерчивает траекторию.
15 марта 2023

Поделиться