Закон степенного роста (убывания) какой-либо величины во времени – это зависимость вида y = C(t – t0)n, где показатель n не равен нулю или единице и может быть положительным, отрицательным, целым или дробным.
Может ли численность роста какой-либо популяции на каком-то этапе своего роста описываться степенным законом? Это возможно лишь при том условии, что на этом этапе прирост численности за небольшой промежуток времени будет пропорционален некоторой степени численности, причем показатель этой степени не должен быть равен единице.
В таком случае вопрос можно сформулировать так: может ли скорость роста численности популяции выражаться в виде степенного закона (3) рис. 1?
Рис. 1. Степенной и экспоненциальный законы роста численности популяции.
При разных значениях параметра m закон (3) описывает параболический, экспоненциальный и гиперболический рост. Возьмем для определенности значения m = 0, 1, 2, которые соответствует трем наиболее часто встречающимся в природе законам: линейному, экспоненциальному и гиперболическому.
Из них только закон экспоненциального роста имеет встроенный масштаб времени или характерное время удвоения численности популяции, что ясно уже из соображений размерности, т. к. показатель экспоненты представлен в виде произведения константы α, умноженной на время t.
Следовательно, величина обратная α, определяющая этот встроенный масштаб времени, должна иметь размерность времени, поскольку в показателе экспоненты может стоять только безразмерная величина.
Термин «встроенный масштаб времени», возможно, является не совсем удачным, поскольку закон экспоненциального роста не содержит в себе какого-то единственного масштаба, в котором можно измерять время протекания процесса. А содержит постоянную времени через которую этот масштаб: время удвоения численности, какое-то другое характерное время, может быть выражен.
Природа экспоненциального роста такова, что если взять произвольную точку на оси времени и откладывать от нее интервалы произвольной, но равной длительности, то численность популяции на последовательности этих интервалов будет расти по закону геометрической прогрессии.
Что в корне отличает его от степенного параболического или гиперболического роста. Для которых не существует встроенного масштаба времени – неизменного времени удвоения численности, т. к. для них это время либо возрастает, либо убывает.
И которые в силу этой своей особенности не могут описывать рост какой-либо популяции, при том условии, конечно, что рост этот определяется причинным законом, т. е. порождается нелинейной положительной обратной связью (НПОС) между численностью и ее естественным приростом. НПОС, причины которой полностью определяются связями (и только связями, а не индивидуальной способностью к размножению) между членами популяции и которая может быть понята́ и описана.
В самой природе степенного роста популяции есть что-то неестественное: трудно себе представить, чтобы прирост численности был пропорционален не самой численности, а какой-то ее степени. При экспоненциальном росте прирост численности популяции пропорционален самой численности. Если удвоить численность, то за этот же промежуток времени удвоится и ее прирост.
Но если прирост зависит от численности по степенному закону – это не так. В таком случае можно попробовать постулировать зависимость коэффициента прироста численности от численности по степенному закону. Открытие закона гиперболического роста населения Земли описывает Л.М. Гиндилис:
«Довольно очевидно, что абсолютный прирост населения должен быть пропорционален численности населения. Если взять какой-то однородный в демографическом отношении регион, то из двух пунктов этого региона, прирост будет выше там, где больше численность населения. Точно так же, чем больше численность населения в момент времени t, тем больше и прирост населения в этот момент. Статистика показывает, что за небольшое время dt, прирост будет равен dN = αNdt. «…»
«В 1960 году в журнале «Science» была опубликована статья трех авторов Х. Фостера, П. Мориа и Л. Эмиота, которая называлась «День страшного суда пятница 13 ноября 2026 года». Используя тщательно отобранные статистические данные авторы показали, что относительный прирост населения растет так же быстро, как само население. Чем объясняется такая зависимость, остается пока неясным». «…»
Рис. 2. Пропорциональность коэффициента мирового естественного прироста общей численности народонаселения позволяет объяснить гиперболический рост населения Земли.
«…Сокращение смертности в целом по земному шару перекрывает уменьшение рождаемости в отдельных (особенно развитых странах), так что естественный прирост на Земле возрастает со временем. Менее ясно почему он растет столь же стремительно как само население, что собственно и приводит к гиперболическому закону. Это пока остается загадкой» [22], стр. 471.
Здесь Л.М. Гиндилис допускает две серьезные ошибки. Первая заключается в том, что, отождествляя закон гиперболического роста численности населения мира с причинным степенным законом квадратичного роста (который утверждает, что причина гиперболического роста заключается в ПОС второго порядка между скоростью роста и численностью), он приписывает Фёрстеру открытие, которого тот не совершал.
Исследование Фёрстера и его коллег касается только зависимости численности от времени, которая была получена при обработке большого количества данных по методу наименьших квадратов. Как в точности, если не говорить о средних величинах, зависела при этом скорость роста численности от численности и от времени, и как зависел коэффициент прироста от численности – остается неизвестным.
На самом деле эмпирическая зависимость численности от времени, открытая Фёрстером и его коллегами, могла быть получена и при другом, отличном от закона квадратичного роста, дифференциальном причинном законе роста. Неясно даже может ли вообще гиперболический рост населения мира, учитывая непонятную, парадоксальную системность человечества, без которой он никогда бы не проявился, быть объяснен с помощью законов с простой преддетерминацией. Связь между скоростью роста и численностью в таком случае в период гиперболического роста могла и не быть причинно-следственной.
Вторая ошибка вполне логична и заключается в том, что автор подменяет здесь проблему гиперболического роста численности населения Земли на проблему линейной зависимости коэффициента мирового естественного прироста от численности.
Если коэффициент естественного прироста для каждого села, города, страны, региона – един и пропорционален численности населения мира: α = αoN, то сложив эти приросты (dNi = αoN*Ni) по всему земному шару, и вынеся αoN за скобку, получим закон квадратичного роста dN/dt = αoN(N1 +…+ Nn) = αoN2, а проинтегрировав его – гиперболу Фёрстера.
Таким образом, Л.М. Гиндилис одним махом решает все проблемы, связанные с аномальной системностью человечества, над которыми безуспешно бьются все исследователи гиперболического роста. Беда здесь только в том, что такая зависимость коэффициента глобального естественного прироста от численности представляется совершенно невозможной по следующей причине:
В таком случае приходится постулировать единый и синхронно растущий по закону простой пропорции коэффициент прироста для населения всех стран и народов, когда-либо населявших Землю, т. е. растущий пропорционально не численности каждого такого выделенного народа или страны, а мира в целом, что представляется совершенно немыслимым.
Следовательно, вопрос здесь не в том, почему относительный глобальный естественный прирост пропорционален численности населения мира. Это неправильно поставленный вопрос. Само представление о том, что гиперболический рост населения Земли может быть объяснен с помощью причинного степенного закона квадратичного роста является ошибочным.
Рост популяции, выраженный степенным или каким-либо другим нелинейным законом, не может быть полностью описан лишь с помощью самого этого закона, т. к. такой закон сам по себе не может объяснить информационную связность растущей популяции, взаимозависимость роста всех ее частей.
Кроме того, рост популяции, происходящий по степенному закону, имеет и свои, специфические, присущие только ему особенности, не позволяющие принять этот закон в качестве причинного закона для описания роста какой-либо реально существовавшей в природе популяции. Перечислим все эти аномальные особенности параболического и гиперболического роста:
1. Оба они имеют особую, выделенную на оси времени точку: момент начала или завершения роста, численность популяции в которой равна нулю для параболического и бесконечности для гиперболического роста. Поскольку такое в реальности невозможно, да и само наличие таких особых точек на шкале роста должно иметь какое-то объяснение, следует признать, что непрерывная модель степенного роста как процесса с простой преддетерминацией изначально содержит в себе внутренние противоречия.
2. Хотя численность популяции при степенном, так же как и при экспоненциальном росте изменяется по закону геометрической прогрессии, но рост этот происходит на последовательности интервалов времени расширяющихся (параболический рост) или сжимающихся (гиперболический рост) по закону прогрессии от/к особой точки/е этого роста.
Это увеличение (уменьшение) времени удвоения численности популяции выполняется при отсчете времени (прямом или обратном) только от этой точки и ни от какой другой, что еще раз подчеркивает ее выделенность. Такой рост, в отличие от экспоненциального роста, является существенно неоднородным во времени процессом. Если взять два равных отрезка времени, различающихся своим положением на шкале роста, то рост численности, в том числе и размножение каждой единичной особи популяции, будет происходить на них совершенно по разному.
Рассмотрим, например, простой гиперболический рост на последовательности отрезков времени, сокращающихся по закону прогрессии со знаменателем 1/2 (так росло население Земли). На каждом таком отрезке время удвоения численности уменьшается вдвое по сравнению с предыдущим, что говорит о том, что особи популяции будут здесь более плодовитыми и/или потери от смертности меньшими[93].
Что совершенно немыслимо для любой популяции, когда-либо существовавшей в природе, время удвоения численности которой в благоприятных и неизменных условиях есть всегда величина постоянная. Поскольку это время по каким-то причинам при каждом таком удвоении численности уменьшается ровно в два раза, то это должно иметь какое-то объяснение; иначе говоря, закон степенного роста, в отличие от закона экспоненциального роста, законом причинно-самодостаточным уже не является. Что это означает?
Это означает то, что в отличие от естественного экспоненциального роста, причина которого заключена в положительной обратной связи между численностью и ее естественным приростом (природу которой не нужно никак дополнительно обосновывать), причиной аномального степенного роста для автономно растущей, никем и никак не управляемой сосредоточенной популяции являются связи (взаимодействия) между членами этой популяции, влияние которых на рост численности требует специального исследования.
3. Закон степенного роста – закон нелинейный и потому прирост численности на особь (элементарную репродуктивную ячейку популяции), за некоторый промежуток времени Δt, равен ΔN/N = αΔtNm-1 и зависит от полной численности популяции, что предполагает при отсутствии четко выраженных границ среды обитания популяции ее глобальную системность, информационную связность во все времена.
Что представляется чрезвычайно жестким, по сути, невыполнимым требованием для любой рассредоточенной популяции, плотность которой не растет или растет незначительно при увеличении ее полной численности. И что уже совершенно непонятно, так это то, что относительный прирост ΔN/N за время Δt неограниченно возрастает, когда численность популяции приближается к особой точке своего роста (2), рис 1.
С учетом всего сказанного следует признать, что степенной рост численности изолированной популяции не может считаться свободным и не может быть описан причинным степенным законом, т. е. законом, описывающим нелинейную ПОС между численностью и естественным приростом.
Этот рост никак не может быть вызван имманентно присущей способностью к размножению любой элементарной ячейки популяции, т. к. такой экспоненциальный рост происходит по закону геометрической прогрессии на интервалах равной длительности. Естественные, свободные, не индуцированные какой-либо управляющей системой связи между членами популяции, также никак не могут вызывать такой рост.
Но степенной рост популяций никогда и не встречается в природе. Все когда-либо существовавшие на Земле виды в условиях избытка ресурсов увеличивали свою численность по экспоненциальному, а не по степенному закону.
Это так для всех видов: от амебы до слона. Для всех – кроме человека. Исследования последнего времени показали, что численность человечества росла по гораздо более быстрому, в завершающей своей стадии, гиперболическому закону. И результаты налицо: нас в десять тысяч раз больше, чем наших ближайших родственников – человекообразных обезьян. Причина такого аномального роста не может быть объяснена, как мы только что показали, причинным законом квадратичного роста.
С.П. Капица, однако считает, что степенной причинный закон может исчерпывающе описывать рост популяции, т. е. делать это ничуть не хуже, чем закон экспоненциального роста:
«Когда рассматривается сложный, многофакторный процесс развития системы, обладающий, однако, статистической стационарностью, следует ожидать, что рост происходит динамически самоподобно. В этом случае остается неизменным пропорция между относительным изменением численности и относительным изменением времени.
Поэтому, в основе модели лежит предположение об автомодельности развития, что выражается в масштабной инвариантности, скейлинге этого процесса. Смысл этой основной гипотезы состоит в том, что утверждается постоянство относительной скорости роста системы.
Это своего рода принцип инерции развития системы, и в этом случае можно показать, что рост должен описываться степенным законом. Таким образом, исключаются экспоненциальный и логистический рост, имеющие внутренний масштаб времени – время удвоения»[94]. (Выделено мной. – А.М.)
Это «обоснование» применимости причинного степенного закона с простой преддетерминацией для объяснения гиперболического роста численности человечества представляется ошибочным. Автор здесь специально напускает туман, т. к. обосновать степенной рост численности населения Земли – не в состоянии.
Что означает «…процесс развития обладает статистической стационарностью»? Стационарность – это неизменность во времени; статистическая стационарность – неизменность в среднем, по вероятности. Статистическая неизменность развития Мир-системы – это, видимо, постоянство в среднем.
О проекте
О подписке