Читать книгу «Философия науки и техники. Проблемы начала XXI века» онлайн полностью📖 — Алексея Валерьевича Ярцева — MyBook.
cover

Беме, Ван Ден Дале и Крон приводят трехфазную модель соотношения науки и техники:

«Первая фаза – фаза научной революции когда ни наука ни техника не институализировались как отдельные социальные системы.

Вторая фаза – фаза когда наука институализировалась что привело к дифференциации науки и техники.

Третья фаза, – в которой наука достигает такого развития, что может быть ориентировала на практические цели и генерирует новые технологии»7.

Однако П. Вайнгарт критикует эту упрошенную модель за то, что она базируется на единичных примерах и имеет методологические дефекты8. К его критике можно добавить, что анализ положения фундаментальной науки показывает, что ее ориентация на «чистое» знание не претерпела изменений. «Интеллектуально за чистой, фундаментальной наукой сохраняется привилегия производства нового знания, которая основывается на допущении или, скорее, определении, что только открытие универсальных законов природы является показателем прогресса в познании»9.

Конечно, ошибочно считать технику лишь прикладной наукой, но не менее ошибочно полагать, что наука играет незначительную роль в техническом прогрессе. Все чаще в нашей жизни именно методы научного исследования становятся технологическими приемами. Это делает науку не только родоначальником новой техники, но и новых технологий производства, а следовательно повышает ее роль в жизнедеятельности людей. Так примером того, как самые отвлеченные научные труды превращаются в основу для новых отраслей промышленности, представляют работы А. Эйнштейна. Вряд ли кто-нибудь из его современников мог даже предположить, что открытое им соотношение между массой и энергией станет началом огромной отрасли промышленности, производящей атомную энергию в мирных и военных целях.

Этой же позиции придерживается американский философ техники

Г. Сколимовски10. Он считает, что целью науки является преумножение человеческих знаний с помощью новых теорий, в то время как целью техники является создание новых артефактов при помощи изобретения средств повышения эффективности. Таким образом, он указывает на то, что цели и средства их достижения в науке и технике различны. Но такое разграничение лишает технический прогресс функции получения знаний, что не соответствует его предназначению. Мы видим пример того, что в настоящее время практически невозможно определить грань между научным и техническим процессом, поэтому стоит говорить о едином научно-техническом прогрессе.

В эволюционной модели соотношения науки и техники выделяются три взаимосвязанные, но самостоятельные сферы: наука, техника и производство (или – более широко – практическое использование). Внутренний инновационный процесс происходит в каждой из этих сфер по эволюционной схеме. Для С. Тулмина, например, очевидно, что выработанная им дисциплинарная модель эволюции науки применима также и для описания исторического развития техники. Только в данном случае речь идёт уже не о факторах изменения популяции теорий или понятий, а об эволюции инструкций, проектов, практических методов, приёмов изготовления и т. д. Новая идея в технике часто ведёт, как и в науке, к появлению совершенно новой технической дисциплины. Техника развивается за счёт отбора нововведений из запаса возможных технических вариантов. Однако, если критерии отбора успешных вариантов в науке являются главным образом внутренними профессиональными критериями, в технике они зачастую будут внешними, т. е. для оценки новаций в технике важны не только собственно технические критерии (например, эффективность или простота изготовления), но и – оригинальность, конструктивность и отсутствие негативных последствий. Кроме того, профессиональные ориентации инженеров и техников различны, так сказать, в географическом отношении: в одних странах инженеры более ориентированы на науку, в других – на коммерческие цели, в третьих – на экологически безопасные. Важную роль скорости нововведений в технической сфере играют социально-экономические факторы.

Исследование развития научного знания, проведенное К. Поппером, Т. Куном, П. Фейерабендом, подготовило распространение аналогии между научным и биологическим развитием. Наиболее ярко и последовательно эта аналогия проводится в эволюционной эпистемологии С. Тулмина11. По мнению этого автора, для описания взаимодействия трёх автономных эволюционных процессов справедлива та схема, которую он создал для описания процессов развития науки, а именно: создание новых вариантов (фаза мутаций) – создание новых вариантов для практического использования (фаза селекции) – распространение успешных вариантов внутри каждой сферы на более широкую сферу науки и техники (фаза диффузии и доминирования). Подобным же образом связаны техника и производство. Тулмин также отрицает, что технику можно рассматривать просто как прикладную науку. Во-первых, неясно само понятие «приложение». В этом плане законы Кеплера вполне могут рассматриваться как специальное «приложение» теории Ньютона. Во-вторых, между наукой и техникой существуют «перекрёстные связи» и часто бывает трудно определить, находится «источник» какой-то научной или технической идеи в области науки или в сфере техники.


Можно добавить, что основная часть приведенного в данной работе исследования посвящена новейшей истории – XV – XXI векам. Соотношение науки в других культурах и на других исторических отрезках было несколько отлично. Нужно помнить о том, что техника действительно долгие столетия развивалась исключительно как ремесло, а наука как элитарное, обособленное от практики времяпрепровождение. Многие тысячелетия, например, обработка металла и врачебное искусство развивались без какой-либо связи с наукой. Положение изменилось лишь в последнее столетие, когда техника и промышленность действительно были революционизированы наукой. Но это не означает, по мнению Тулмина, что изменилась сама сущность техники, но лишь то, что новое, более тесное партнёрство техники и науки привело к ускорению решения технических проблем, ранее считавшихся неразрешимыми. Можно добавить только, что связи между любыми отраслями знания со временем растут и развиваются. И от чистой философии, чистого умозрительного анализа человеческая мысль постоянно шагает в направлении практического применения.

Аналогичным образом объяснял взаимодействие науки и техники другой известный философ науки – Дерек де Солла Прайс12, который пытался разделить развитие науки и техники на основе выделения различий в интенциях и поведении тех, кто занимается научным техническим творчеством. Учёный – это тот, кто хочет публиковать статьи, для техника же опубликованная статья не является конечным продуктом. Фред Бон подчеркивает различие между наукой и техникой заключающееся в том, что наука ограничивается лишь предсказанием явлений, тогда как она должна давать возможность их вызывать13.

Прайс определяет технику как исследование, главным продуктом которого является не публикация (как в науке), а – машина, лекарство, продукт или процесс определённого типа и пытается применить модели роста публикаций в науке к объяснению развития техники.

В данном случае философы науки пытаются перенести модели динамики науки на объяснение развития техники. Однако этот взгляд представляется весьма узким. Конечно, это не означает, что многие результаты, полученные в современной философии науки, не могут быть использованы для объяснения и понимания механизмов развития техники, особенно вопроса о соотношении науки и техники. Однако некоторые факты приведенные ниже указывают на то, что логика развития техники несколько отлична.

Согласно такой точки зрения, наука развивалась, ориентируясь на развитие технических аппаратов и инструментов, и представляет собой ряд попыток исследовать способ функционирования этих инструментов. Германский философ Гернот Беме приводит в качестве примера теорию магнита английского учёного Вильяма Гильберта, которая базировалась на использовании компаса. Аналогичным образом можно рассмотреть и возникновение термодинамики. Термодинамика возникла в первой половине XIX века в связи с развитием теории тепловых машин (С. Карно) и установлением закона сохранения энергии (Ю. Р. Майер, Дж. Джоуль, Г. Гельмгольц).

Другими примерами являются открытия Галилея и Торричелли, к которым их привело знакомство с практической работой инженеров, строивших водяные насосы. По мнению Беме, техника ни в коем случае не является применением научных законов, скорее, в технике идёт речь о моделировании природы сообразно социальным функциям. «И если говорят, что наука является базисом технологии, то можно точно также сказать, что технология даёт основу науке… Существует исходное единство науки и технологии Нового времени, которое имеет свой источник в эпохе Ренессанса. Тогда механика впервые выступила как наука, как исследование природы в технических условиях (эксперимента) и с помощью технических моделей (например, часов и т. п.)»14.

Через появление лабораторий при производстве начинается процесс зарождения собственно технического знания, как связующего звена между наукой и практикой. «Прогресс в добыче металлов (железа) и открытии новых источников энергии (паровая машина) сделал затем необходимыми систематические эксперименты и точные расчеты. С учреждением соответствующих лабораторий для специфических нужд технических наук (в Германии они появились поначалу при Высшей технической школе в Мюнхене в 1871 г.) также стало очевидным, что технические дисциплины обладают своей собственной, отличной от естественных наук предметной областью»15.



В известной степени техника находится между наукой и природой, являясь каналом, по которому идеи человека транслируются в мир природы. Таким же образом идет и обратный поток – познавая природу, через технику применения её элементов, человек обогащает научные знания. Можно сказать даже, что техника ближе к природе, нежели к науке, так как технические объекты и природные осязаемы. Утверждение Бёме о точ, что техника дает основу науке, отчасти верно, поскольку прогресс науки зависел в значительной степени от изобретения соответствующих научных инструментов (технических инструментов созданных специально для научных целей). Причём многие технические изобретения были сделаны до возникновения экспериментального естествознания, например, телескоп и микроскоп.

Можно в том числе утверждать, что без всякой помощи науки были реализованы крупные архитектурные проекты. Например, одно из семи чудес – египетские пирамиды в Гизе были построены только с использованием физического труда и технических устройств, в частности с помощью подъемных машин. Без сомнения, прогресс техники сильно ускоряется наукой; верно также и то, что «чистая» наука пользуется техникой, т. е. инструментами, а наука была дальнейшим расширением техники. Но это ещё не означает, что развитие науки определяется развитием техники. А к современной науке, скорее даже, применимо противоположное утверждение.

Четвёртая точка зрения, приводимая Гороховым в работе «Основы философии техники и технических наук», оспаривает предыдущую, утверждая, что техника науки, т. е. измерение и эксперимент, во все времена обгоняет технику повседневной жизни. Это объясняется проявлением единства двух противоположных тенденций во взаимосвязи науки и техники. С одной стороны, возрастает роль техники в развитии науки, усиливается зависимость развития науки от уровня развития и запросов техники. С другой – увеличивается относительная самостоятельность развития науки от техники, что проявляется, в частности, в опережении отдельными отраслями науки непосредственных запросов техники и даже в рождении наукой отдельных отраслей.

Эти противоположные и взаимосвязанные тенденции и свидетельствуют о не одинаковых темпах развития техники на ее разных структурных уровнях. Темпы развития техники как источника развития науки являются большими, чем темпы развития самой науки. Этим обеспечивается, с одной стороны, определяющая роль техники по отношению к науке. С другой стороны, темпы развития техники как результата реализации научных знаний ниже темпов роста этих знаний. В силу этого рост научных знаний опережает непосредственные запросы техники. Таким образом, мы получаем, что развитие техники науки опережает развитие техники повседневной жизни.

Этой точки зрения придерживался, например, А. Койре, который оспаривал тезис, что наука Галилея представляет собой не что иное, как продукт деятельности ремесленника или инженера. Он подчёркивал, что Галилей и Декарт никогда не были людьми ремесленных или механических искусств и не создали ничего, кроме мыслительных конструкций. С его точки зрения не Галилей учился у ремесленников на венецианских верфях, напротив, он научил их многому. Он был первым, кто создал первые действительно точные научные инструменты – телескоп и маятник, которые были результатом физической теории. При создании своего собственного телескопа Галилей не просто усовершенствовал голландскую подзорную трубу, а исходил из оптической теории, стремясь сделать невидимое наблюдаемым, из математического расчёта, стремясь достичь точности в наблюдениях и измерениях.

Измерительные инструменты, которыми пользовались его предшественники, были по сравнению с приборами Галилея ещё ремесленными орудиями. Новая наука заменила расплывчатые и качественные понятия аристотелевской физики системой надёжных и строго количественных понятий. Заслуга великого учёного в том, что он заменил обыкновенный опыт основанным на математике и технически совершенным экспериментом. Декартовская и Галилеевская наука имела огромное значение для техников и инженеров. То, что на смену миру «приблизительности» и «почти» в создании ремесленниками различных технических сооружений и машин приходит мир новой науки – мир точности и расчёта, – заслуга не инженеров и техников, а теоретиков и философов. Примерно такую же точку зрения высказывал Луис Мэмфорд: «Сначала инициатива исходила не от инженеров-изобретателей, а от учёных… Телеграф, в сущности, открыл Генри, а не Морзе; динамо – Фарадей, а не Сименс; электромотор – Эрстед, а не Якоби; радиотелеграф – Максвелл и Герц, а не Маркони и Де Форест…» Преобразование научных знаний в практические инструменты, с точки зрения Мэмфорда, было простым эпизодом в процессе открытия. Из этого выросло новое явление: обдуманное и систематическое изобретение. Например, телефон на большие дистанции стал возможен только благодаря систематическим исследованиям в лабораториях Белла16.

Горохов же оценивает и этот взгляд как весьма односторонний. Хорошо известно, что ни Максвелл, ни Герц не имели в виду технических приложений развитой ими электромагнитной теории. Герц ставил естественнонаучные эксперименты, подтвердившие теорию Максвелла, а не конструировал радиоприёмную или радиопередающую аппаратуру, изобретённую позже. Потребовались ещё значительные усилия многих учёных и инженеров, прежде чем подобная аппаратура приобрела современный вид. Верно, однако, что эта работа была связана с серьёзными систематическими научными (точнее, научно-техническими) исследованиями. Как например «в случае с радио (Маркони, 1895—1907) и с вентелем Флеминга (1904), которые были тесно связаны с работой Максвелла по электромагнетизму (1873). Другим примером является химия, где разработка периодической системы (Менделеев, 1871) и развитие основных теорий химических соединений (Кекуле, 1858—1866) подготовили фундамент для того, что должно было стать первой отраслью промышленности, „основанной на науке“»17.

В то же время технологические инновации вовсе не обязательно являются результатом движения, начинающегося с научного открытия. Эта теория находит свое подтверждение и в наше время. Например, результаты работы большого адро́нного коллайдера – ускорителя заряженных частиц на встречных пучках, предназначенного для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений, исключительно важны с научной точки зрения, так как дают возможность смоделировать процессы, происходящие в «чёрных дырах». Но с другой стороны эти результаты на данном этапе развития человечества не имеют практического применения в повседневной жизни.

Наиболее реалистической и исторически обоснованной точкой зрения (пятая точка зрения) является та, которая утверждает, что вплоть до конца XIX века регулярного применения научных знаний в технической практике не было, но это характерно для технических наук сегодня. «Принцип XVIII века, что наука больше обязана технике, чем наоборот, – пишет П. Вайнгарт, – был неприменим в XIX веке. Отношения между наукой и техникой, если они вообще существовали, были несистематическими…»18 В течение XIX века отношения науки и техники частично переворачиваются в связи со «сциентификацией» техники. Этот переход к научной технике не был, однако, однонаправленной трансформацией техники наукой, – он был их взаимосвязанной модификацией. Другими словами, «сциентизация техники» сопровождалась «технизацией науки».