Читать книгу «Энциклопедия финансового риск-менеджмента» онлайн полностью📖 — Алексея Лобанова — MyBook.

1.12. Цена базисного пункта

Для оценки рискованности облигаций используется показатель, называемый ценой базисного пункта.

Ценой базисного пункта (price value of a basis point – PVBP) называют изменение цены облигации номиналом 100 долл. при уменьшении требуемой доходности на один базисный пункт.

Таким образом, цена базисного пункта определяется следующей формулой:


где δP – цена базисного пункта облигации;

Р(r) – цена облигации номиналом 100 долл. при требуемой доходности, равной r;

Р(r – Δr) – цена облигации при требуемой доходности, равной r – Δr;

Δr = 0,0001.

Замечание

1. Изменение цены облигации номиналом 100 долл. при увеличении требуемой доходности на 1 базисный пункт практически совпадает с ценой базисного пункта этой облигации.

2. Изменение цены облигации номиналом 100 долл. при уменьшении (увеличении) требуемой доходности на х базисных пунктов при х ≤ 10 приблизительно равно произведению цены базисного пункта на число х.

Пример 1.32. Рассмотрим 6 %-ную облигацию с полугодовыми купонами, когда до погашения остается 10 лет, а требуемая доходность равна 10 %.

В данном случае



и по формуле (1.30) цена базисного пункта



Следовательно, изменение цены облигации при увеличении требуемой доходности на 8 базисных пунктов должно приблизительно равняться:



Точное значение этого изменения может быть найдено следующим образом:




Нетрудно проверить, что имеет место следующее утверждение: чем выше требуемая доходность для данной облигации, тем ниже цена базисного пункта (рис. 1.10).

Пример 1.33. Рассмотрим облигацию из примера 1.32 при требуемой доходности 6 %. В этом случае цена базисного пункта



превышает цену базисного пункта из примера 1.32.

Цена базисного пункта для портфеля облигаций находится по формуле:



где Ak – номинальная стоимость облигации k-го вида

δkP – цена базисного пункта облигации k-го вида при номинале 100 долл.;

N – число облигаций в портфеле.

1.13. Дюрация финансовых инструментов

Рассмотрим финансовый инструмент со следующим потоком платежей:



Если требуемая доходность при начислении процентов дважды в год равна r, то дюрацией Маколея (Macaulay duration) данного финансового инструмента называется величина



Модифицированная дюрация (modified duration) финансового инструмента определяется равенством



где D – дюрация Маколея,

r – требуемая доходность при начислении процентов дважды в год.

Имеет место следующее равенство:



т. е. производная цены финансового инструмента по требуемой доходности равна произведению модифицированной дюрации этого инструмента на его цену с обратным знаком.

Основное свойство дюрации – при малых изменениях требуемой доходности имеет место равенство



Геометрическая иллюстрация равенства (1.34) приведена на рис. 1.11.




Расчет дюрации финансового инструмента при требуемой доходности 10 % приведен в таблице:



Таким образом, дюрация Маколея финансового инструмента равна 2,155 года.

Тогда модифицированная дюрация находится следующим образом:



Если требуемая доходность увеличится на 10 базисных пунктов, то



т. е. цена финансового инструмента упадет на 0,2 %.

Если же требуемая доходность мгновенно упадет на 200 базисных пунктов, то цена финансового инструмента вырастет приблизительно на 4,104 %, так как



Точные значения относительного изменения цены финансового инструмента в этих двух случаях соответственно равны -0,002049 и 0,04222.

Дюрацию обыкновенной ренты с полугодовыми платежами можно найти по формуле:



где r – требуемая доходность (при начислении процентов дважды в год);

n – число платежей ренты.

В частности, дюрация бессрочной ренты определяется равенством



Дюрация Маколея облигации с полугодовыми купонами, когда до ее погашения остается в точности п полугодовых периодов, может быть найдена по формуле



где r – требуемая доходность при начислении процентов дважды в год;

f – купонная ставка облигации;

H – отношение приведенной стоимости ренты из купонных платежей к цене облигации.

Пример 1.35. Дана 7 %-ная облигация с полугодовыми купонами, когда до ее погашения остается 20 лет, а требуемая доходность – 10 %.

В данном случае r = 0,1, f = 0,07, n = 40, q = 3,50 долл.

Приведенная стоимость ренты из полугодовых купонных платежей может быть найдена следующим образом:




Для расчета модифицированной дюрации любого финансового инструмента с заданным потоком платежей можно использовать следующую приближенную формулу:



Пример 1.36. Рассмотрим облигацию из примера 1.35. Точное значение модифицированной дюрации этой облигации 9,18023 года. Найдем модифицированную дюрацию с помощью приближенной формулы (1.38) при Δу = 20 базисных пунктов.



Основные утверждения о дюрации Маколея для купонных облигаций с полугодовыми купонами, когда до очередного купонного платежа остается 6 месяцев:

1. Дюрация любой купонной облигации не превышает срока до ее погашения, а дюрация облигации с нулевым купоном всегда совпадает со сроком до ее погашения.

2. Если купонная ставка облигации отлична от нуля, то чем больше требуемая доходность, тем меньше дюрация.

3. Если до погашения облигации остается более одного купонного периода, то чем выше купонная ставка при неизменной требуемой доходности, тем меньше дюрация.

4. Чем меньше времени остается до погашения облигации при прочих неизменных факторах, тем меньше дюрация (за исключением долгосрочных облигаций, продающихся с дисконтом).

1.14. Модифицированная дюрация портфеля облигаций

Модифицированной дюрацией портфеля облигаций называют взвешенную по стоимости сумму модифицированных дюраций облигаций, входящих в этот портфель, т. е.


Основное свойство модифицированной дюрации портфеля облигаций: если требуемые доходности всех облигаций портфеля изменяются на одну и ту же достаточно малую величину, имеет место следующее приближенное равенство:



Пример 1.37. Рассмотрим портфель, состоящий из трех облигаций с полугодовыми купонами при требуемой доходности 10 % со следующими данными:



В данном случае начальная стоимость портфеля П = 9 609 961 долл. Тогда



Следовательно, модифицированная дюрация портфеля облигаций составляет



Если требуемые доходности мгновенно увеличатся на 60 базисных пунктов, то



т. е. цена портфеля упадет на 3,88 %.

Точное изменение цены портфеля равно -0,0376, т. е. -3,76 %.

Говорят, что инвестор занимает длинную позицию (long position) на рынке облигаций, если он купил некоторую облигацию на этом рынке.

Если же инвестор взял облигацию взаймы у дилера и продал ее на рынке, то говорят, что на рынке облигаций он занимает короткую позицию (short position). Инвестор, занимающий короткую позицию, обязан в определенный момент времени в будущем вернуть облигацию дилеру и выплатить компенсацию за недополученные купонные платежи. Рассмотрим на примере, как определить модифицированную дюрацию портфеля, состоящего из длинных и коротких позиций на рынке облигаций.

Пример 1.38. Портфель состоит из двух позиций: длинной позиции в размере 100 млн долл. по двухлетней облигации ценой 101 долл. с модифицированной дюрацией 1,7 и короткой позиции в размере 50 млн долл. по 5-летней облигации ценой 99 долл. с модифицированной дюрацией 4,1. Определим модифицированную дюрацию этого портфеля.

Исходная стоимость портфеля может быть найдена следующим образом:


1.15. Приложения дюрации

1.15.1. Обмен облигаций

Предположим, что инвестор рассматривает вопрос об обмене облигации Х стоимостью VX с модифицированной дюрацией на облигацию Y с модифицированной дюрацией при цене PY (на номинал 100 долл.).

Выясним, каким должен быть номинал облигации Y, чтобы обмен облигации Х на облигацию Y не увеличивал подверженность инвестора процентному риску.

Если требуемая доходность облигации Х изменится на величину Δr, то соответствующее изменение стоимости этой облигации определяется равенством



Можно предположить, что на основе статистических исследований установлено, что при изменении требуемой доходности облигации Х на величину Δr требуемая доходность облигации Y изменяется на величину βΔr.

Тогда соответствующее изменение стоимости облигации Y можно найти по формуле:



где Ay – номинал облигации Y.

Обмен облигаций не будет увеличивать подверженность процентному риску, если при любом Δr



Равенство (1.43) показывает, каким должен быть номинал облигации Y, чтобы при обмене облигации Х на облигацию Y не увеличивался процентный риск.

Пример 1.39. Инвестор рассматривает вопрос об обмене облигации Х стоимостью 8 млн долл. на облигацию Y при цене PY = 96 долл. Модифицированные дюрации облигаций Х и Y равны 5 и 4 соответственно, а коэффициент β равен 1,6.

Чтобы при обмене не менялась подверженность процентному риску, номинал облигации Y должен удовлетворять равенству:



Таким образом, искомый номинал облигаций Y должен равняться 6 510 417.

1.15.2. Иммунизация портфеля облигаций

Предположим, что в данный (нулевой) момент времени инвестор владеет портфелем облигаций, который он собирается продать через Т лет.

Если в данный момент времени все рыночные доходности одинаковы, т. е. кривая доходности имеет ровный вид, то будущая стоимость инвестиций ПА(Т) через Т лет определяется следующим образом:



где r – рыночная доходность,

П(r) – стоимость портфеля при рыночной доходности, равной r.

Будущую стоимость ПА(Т) будем называть целевой накопленной стоимостью портфеля облигаций.

Однако если между данным моментом времени и первым процентным платежом рыночные доходности изменяются на одну и ту же величину Δr, а в дальнейшем уже меняться не будут, то будущая стоимость инвестиции Пф(Т) через Т лет удовлетворяет равенству



Будущую стоимость Пф(Т) будем называть фактической накопленной стоимостью портфеля облигаций.

Фактическая накопленная стоимость портфеля облигаций может оказаться выше или ниже целевой накопленной стоимости этого портфеля. Однако если временной горизонт инвестора Т совпадает с дюрацией Маколея портфеля облигаций, то фактическая накопленная стоимость портфеля никогда не будет меньше его целевой накопленной стоимости.

Пример 1.40. Рассмотрим портфель из двух облигаций с полугодовыми купонами, когда все рыночные доходности равны 6 %. Основные данные об облигациях портфеля приведены ниже в таблице:



Дюрация Маколея данного портфеля облигаций находится следующим образом:



Целевая накопленная стоимость портфеля через 4,053 года будет равна:



В таблице указаны фактические накопленные стоимости через 4,053 года при различных изменениях рыночных доходностей:



Стратегия иммунизации портфеля облигаций рассчитана на защиту портфеля облигаций от процентного риска. Эта стратегия предполагает следующие действия. В начальный момент времени формируется портфель облигаций так, чтобы дюрация Маколея этого портфеля совпадала с временным горизонтом инвестора. С годами портфель периодически пересматривается так, чтобы каждый раз дюрация Маколея совпадала с временным горизонтом инвестора.

1
...
...
13