Читать книгу «Энциклопедия финансового риск-менеджмента» онлайн полностью📖 — Алексея Лобанова — MyBook.

Изменения во втором издании

Во втором, исправленном и дополненном издании книги улучшения были внесены практически во все главы, при этом материал глав II, VIII, IX и X был существенно расширен. Так, в главе II более подробно освещены арбитражные и неарбитражные модели эволюции процентной ставки и методы ценообразования инструментов, производных от процентной ставки, в частности опционов на купонные облигации. В главе V приведена полная классификация событий, приводящих к операционным потерям, которая была предложена Базельским комитетом по банковскому надзору в Новом соглашении по капиталу. Глава VIII дополнена материалами по организационным аспектам риск-менеджмента, в том числе по построению «карты рисков»; также в ней приведены рекомендации Базельского комитета по проведению стресс-тестирования в рамках подхода на основе внутренних рейтингов. В главу IX добавлен раздел, посвященный рискам страхования банковских вкладов. Глава X расширена за счет включения нового раздела, посвященного анализу макроэкономических рисков как причин банковского кризиса в России в 1998 г.

Изменения в четвертом издании

В четвертом, исправленном и дополненном издании в главу I включены определения медианы и моды вероятностных распределений, характеристики биномиального распределения, распределения Пуассона, бета- и гамма-распределений, двумерного нормального распределения. Глава также дополнена разделом, посвященным теории экстремальных значений. В главе II приведена краткая характеристика соглашений о форвардной процентной ставке (FRA). В главу VIII включены новые комментарии к методу RAROC и его модификациям, описания актуальных сценариев для проведения стресс-тестирования, а также раздел, посвященный методам контроля за трейдерами и управлению торговыми лимитами. В главе IX полностью переработан и дополнен обзор Нового соглашения по капиталу 2004 г. («Базеля II»), выполненный на основе последней редакции этого соглашения от ноября 2006 г. Кроме того, существенно обновлена библиография глав VIII и IX.

Редакторы и авторы выражают благодарность всем читателям, приславшим свои отзывы и замечания к текстам предыдущих изданий книги.

А. А. Лобанов, А. В. Чугунов
Исследовательская группа «РЭА – Риск-Менеджмент»

I. Количественный анализ
В. Е. Барбаумов

1.1. Введение

Научно обоснованное управление финансовыми рисками невозможно без соответствующей методики измерения этих рисков. Существующие методы измерения финансовых рисков в основном опираются на современную теорию финансовых инструментов с фиксированными доходами, теорию вероятностей, математическую статистику и теорию случайных процессов. Именно эти вопросы составляют основное содержание первой главы настоящей книги.

В частности, при изучении финансовых инструментов с фиксированными доходами вводятся многие фундаментальные понятия теории финансов: будущая и приведенная стоимости инвестиций, внутренняя доходность облигаций, временная структура процентных ставок, кривая рыночных доходностей, дюрация и выпуклость портфелей облигаций. Все эти понятия широко используются как при измерении финансовых рисков, так и при построении стратегий хеджирования этих рисков.

После небольшого обзора основных положений теории вероятностей рассматриваются важнейшие статистические методы оценки различных финансовых показателей, используемых в риск-анализе.

В заключительной части главы вводятся основополагающие понятия теории случайных процессов: сечения и траектории, математическое ожидание и дисперсия, процесс случайного блуждания, биномиальная модель, винеровский случайный процесс, стохастические дифференциальные уравнения. Подробно исследуется процесс геометрического броуновского движения, который играет ключевую роль в оценке производных финансовых инструментов.

1.2. Будущая стоимость денежного потока

Предположим, что денежная сумма Р инвестирована на Т лет под годовую процентную ставку r(m) при начислении процентов m раз в год. Тогда будущая стоимость (future value) инвестиции может быть найдена следующим образом:


Если же денежная сумма Р инвестирована под годовую процентную ставку при непрерывном начислении процентов, то будущая стоимость инвестиции определяется равенством:



Пример 1.1. Денежная сумма в 1 млн долл. инвестирована на 6 лет под годовую процентную ставку 6,4 %. Определим будущую стоимость инвестиции, если проценты начисляются: а) один раз в год; б) дважды в год; в) ежеквартально; г) непрерывно:



Очевидно, что будущая стоимость инвестиции возрастает при:

а) увеличении срока;

б) возрастании годовой процентной ставки;

в) росте частоты начисления процентов.

Годовые процентные ставки называют эквивалентными, если при инвестировании любой суммы Р под эти ставки на один и тот же срок совпадают будущие стоимости.

В частности, годовые процентные ставки r(m) и r(n) при начислении процентов m и n раз соответственно оказываются эквивалентными тогда и только тогда, когда



Годовая процентная ставка при непрерывном начислении процентов эквивалентна годовой процентной ставке r(m) при начислении процентов m раз в год тогда и только тогда, когда



Пример 1.2. Банк предлагает по депозитам годовую процентную ставку в 8 % при начислении процентов один раз в год. Какую годовую процентную ставку можно требовать при начислении процентов: а) дважды в год; б) ежеквартально; в) непрерывно?



Предположим теперь, что инвестору обещают через t1, t2…., tn лет денежные суммы Pt1, Pt2…., Ptn соответственно. Если инвестор предполагает инвестировать все поступающие денежные суммы под одну и ту же годовую процентную ставку, то через Т лет будущая стоимость денежного потока будет равна:




Какова будущая стоимость денежного потока через 3 года, если инвестор предполагает инвестировать поступающие денежные суммы под 7 % при начислении процентов: а) дважды в год; б) непрерывно?



Если одну и ту же денежную сумму выплачивают (или получают) периодически в течение ряда лет, то соответствующий денежный поток называют рентой[13] (annuity). Промежуток времени между двумя соседними платежами – это рентный период. Ренту называют обыкновенной (ordinary annuity), если первый рентный платеж приходится в точности на конец одного рентного периода.

Рассмотрим обыкновенную ренту размером А сроком на Т лет, рентный период которой составляет года. По данной ренте будут произведены Тт платежей одной и той же величины А, причем i-й платеж (i = 1, 2…., Тт) должен быть произведен через  лет.



Если предположить, что все рентные платежи будут инвестироваться под одну и ту же годовую процентную ставку r(m) при начислении процентов m раз в год, то будущая стоимость обыкновенной ренты через Т лет может быть определена следующим образом:



Так как



то



Пример 1.4. Менеджер покупает облигацию, по которой выплачиваются проценты в размере 40 долл. каждые полгода в течение 10 лет и номинальная стоимость в 1000 долл. в конце десятого года. Определим будущую стоимость инвестиции через 10 лет, если все платежи реинвестируются под 6,7 %, а первый процентный платеж производится через 6 месяцев.

Денежный поток, определяемый облигацией, представляет собой обыкновенную ренту, в которой А = 40 долл., m = 2, Т = 10 лет, и выплату 1000 долл. в конце десятого года. Отсюда


1.3. Приведенная стоимость денежного потока

Денежную сумму, которую необходимо инвестировать сегодня, чтобы через определенное время получить данную будущую стоимость, называют приведенной стоимостью (present value).

Имеет место следующее равенство:


где

РV – приведенная стоимость инвестиции;

FV – будущая стоимость;

Т – срок инвестиции;

r(m) – процентная ставка при начислении процентов m раз в год.

Процентную ставку r(m), используемую для определения приведенной стоимости инвестиции, называют ставкой дисконтирования (discount rate). Если ставка дисконтирования определяется при непрерывном начислении процентов, то формула (1.10) принимает вид:



Пример 1.5. Менеджер пенсионного фонда должен через 6 лет выплатить 10 млн долл. В данный момент менеджер имеет возможность инвестировать любую сумму под 7,5 % при начислении процентов дважды в год. Сколько должен инвестировать менеджер пенсионного фонда, чтобы выполнить свое обязательство?

Приведенная стоимость 10 млн долл. может быть найдена по формуле (1.10):



Следовательно, менеджер должен инвестировать 6 428 989,78 долл., чтобы через 6 лет получить 10 млн долл.

Из равенства (1.10) следует, что при прочих равных условиях:

1) чем больше ставка дисконтирования, тем меньше приведенная стоимость, и наоборот;

2) чем меньше срок инвестиции, тем больше приведенная стоимость, и наоборот.

Приведенная стоимость потока денежных платежей определяется в виде суммы приведенных стоимостей платежей, образующих этот денежный поток.

Пример 1.6. Финансовый директор компании знает, что ему предстоит произвести следующие платежи:



Какую денежную сумму необходимо инвестировать сегодня, чтобы обеспечить выполнение обязательств, если процентная ставка равна 6 % при начислении процентов дважды в год?

Достаточно определить приведенную стоимость данного потока платежей:



Если денежный поток представляет собой обыкновенную ренту, по которой т раз в год в течение Т лет выплачивается одна и та же денежная сумма А, то приведенная стоимость такой ренты может быть найдена следующим образом:



Пример 1.7. Банк согласился предоставить 30-летний ипотечный кредит в размере 100 000 долл. По условиям ипотечного кредитования ежемесячные платежи заемщика должны быть одинаковыми. Годовая процентная ставка, требуемая банком, равна 12 %. Какова величина ежемесячного платежа заемщика?

Величина ежемесячного платежа заемщика определяется из условия, что приведенная стоимость потока платежей заемщика должна составить 100 000 долл. Значит,



Обыкновенную ренту называют бессрочной[14] (perpetual annuity), если поток рентных платежей не ограничен по времени. Приведенная стоимость бессрочной ренты, по которой m раз в год выплачивается сумма А, может быть найдена следующим образом:


1.4. Внутренняя доходность финансовых инструментов

Внутренней доходностью (internal rate of return – IRR) финансового инструмента называют процентную ставку, при которой приведенная стоимость потока платежей по данному финансовому инструменту совпадает с его рыночной ценой.

Пример 1.8. Финансовый инструмент продается по цене 1243,82 долл., и по нему каждые 6 месяцев выплачивается по 50 долл. в течение 5 лет и еще 1000 долл. в конце пятого года. Покажем, что внутренняя доходность данного финансового инструмента при начислении процентов дважды в год составляет 4,5 %.

Приведенная стоимость денежного потока по данному финансовому инструменту определяется следующим образом:



где r(2) – годовая процентная ставка при начислении процентов дважды в год.

При r(2) = 0,045 имеем



Так как приведенная стоимость денежного потока, определяемого финансовым инструментом, совпала с его рыночной ценой, то внутренняя доходность этого инструмента действительно равна 4,5 %.

Рассмотрим финансовый инструмент со следующим потоком платежей:



Внутренняя доходность рассматриваемого финансового инструмента при начислении процентов m раз в год является решением уравнения:



где Р – рыночная цена финансового инструмента.

Функция стоящая в правой части уравнения (1.14), всегда является убывающей и выпуклой. График функции изображен на рис. 1.1.



Для решения уравнения (1.14) можно использовать метод проб и ошибок. Вначале найдем простым подбором числа α1 и β1 так, чтобы P(α1) > Р, а P(β1) < Р (рис. 1.2). Тогда искомая внутренняя доходность будет находиться между α1 и β1, т. е. у ∈ (α1, β1). Промежуток (α1

















1
...
...
13