Читать книгу «Физика. Порядок вещей, или Осознание знаний. Книга 2» онлайн полностью📖 — Александра Алексеевича Астахова — MyBook.
image

В выводе уравнения моментов этот же путь выражен через приращение углового перемещения и радиус, но уже без «двойки». Обозначим этот путь, как (Sугл):

Sугл = r * Δφ = Δω * r * t

Найдём соотношение этих путей:

Sа/Sугл = Δω * r * t / 2 * (Δω * r * t) = 1/2

Как видно, перемещение (Sугл = r * Δφ), изначально заложенное в выводе уравнения моментов, вдвое больше пути, который должно пройти тело с тангенциальным ускорением во время работы по приращению скорости, равному (ΔV = Δω * r). Это означает, что на перемещении в один радиан согласно уравнению моментов действует удвоенная сила, совершающая соответственно и удвоенную работу, либо одинарная сила действует на перемещении в два радиана, так же совершая удвоенную работу, кому как больше нравится.

Тогда реальное угловое перемещение, соответствующее заданной силе момента и соответственно его заданному ускорению равно:

Δφ = Δω * t / 2

Как видно, это вдвое меньше углового (Δφ) и соответствующего ему линейного перемещения, заложенного в вывод уравнения моментов. Если правая часть это работа, как это непосредственно следует из логики самого вывода уравнения моментов, то множитель «1/2» явно потерян! Если же это не работа, как утверждают некоторые защитники правомерности уравнения моментов, то удвоенная по сравнению с работой величина этого нечто вообще не имеет физического смысла и соответственно объяснений в классической физике.

Как бы то ни было, но если исходить из соображений работы, то классический момент силы (Мк) завышен вдвое по отношению к реальному моменту (Мр):

Мк = 2 * Мр

Этот момент реален вовсе не потому, что он момент, т.к. такой величины в природе не существует. Он реален по отношению к заданной реальной силе и её реальной работе, только из реальности которой можно получить хоть что-то физически реальное, в том числе и силу Кориолиса.

Тогда:

Мр = ½ * Мк = ½ * m * d (ω * r2) / dt

После дифференцирования получаем:

Мр = ½ * Мк = ½ * 2 * m * ω * r * dr / dt = ½ * 2 * m * ω * r * V

Или:

Мр = m * ω * r * V

Из этого следует, что реальная сила Кориолиса (Fкр) определяется без «двойки»:

Fкр = m * ω * V

Это элементарная физико-математическая ошибка классической динамики вращательного движения, которую, однако, на протяжении более 200-от лет почему-то не замечали и до сих пор не замечают якобы правильные физики и якобы правильные математики. Математики не могли её заметить в принципе, т.к. они не физики, а операции с математическими кракозябликами в уравнении моментов проведены формально верно. А физики, видимо, тоже оказались больше математиками, чем физиками и соответственно тоже ничего не физического в выводе уравнения моментов не заметили.

Это ярчайший пример того, как из якобы правильной математики делается неправильная физика. А если без якобы, то всё происходит ровно наоборот.

Кто-то может возразить, что при выводе уравнения моментов обе его части сокращаются на (Δφ) или в нашей версии на (Δφ/2), поэтому на общее равенство уравнения это не влияет. Для математиков равенство действительно не изменяется, но для физиков его количественный уровень после сокращения уменьшится в (Δφ/2) раз. При этом для бессмысленного уравнения моментов сокращение на (Δφ/2) действительно не критично, потому что оно и так бессмысленное. А вот для физики и в частности для силы и ускорения Кориолиса – это недопустимо, т.к. эта бессмыслица не соответствует физике явления Кориолиса и работе силы.

Это как раз и означает, что (Мк = 2 * Мр). А для тех, кто с этим не согласен, напомним, что по той же логике сокращения на общие множители необходимо сократить всё уравнение моментов ещё и на радиус, после чего оно приобретёт свой естественный вид второго закона Ньютона (F = m * a). Это, кстати соответствует Закону сохранения истины в отношении второго закона Ньютона (см. гл. 2.). Тогда сила Кориолиса приобретёт своё естественное значение без притянутой за уши классической динамики вращательного движения и соответственно без пресловутой двойки.

F = m * dV/dt = m * ω * dr/dt = m * ω * V

Это как раз то, о чём мы говорили в первой части настоящей главы относительно правил решения уравнений только после их сокращения на общие множители. Цитируем первую часть: «…к примеру, уравнение вида (x * y = a * x2 + b * x…) должно быть приведено к виду (y = f (x) = a * x + b…». Естественное значение силы Кориолиса (F = m * ω * V) можно получить и через мерную динамику вращательного движения (см. гл. 4.2), которую мы разработали взамен не имеющего физического смысла уравнения моментов чего-то, почему-то. Следовательно классическая динамика вращательного движения со всеми своими основными и не очень основными уравнениями не верна.

Сторонники классической физики могут возразить, что момент силы – это уже не работа, а совсем другая физическая величина, без множителя (½). Существует, например, вывод уравнения моментов через векторное умножение второго закона Ньютона на радиус, из которого после дифференцирования по (dt) получается уравнение моментов.

[r * dmv / dt] = [F * r]

d [r * mv] / dt = [dr / dt * mv] + [r * dmv / dt]

Здесь (dr / dt) принимается за тангенциальную скорость, образующуюся вдоль вектора силы:

dr / dt = v

А поскольку произведение коллинеарных векторов равно нулю

[dr / dt * mv] = 0,

то:

d [r * mv] / dt = [F * r]

или

M = F * r = dL / dt = m * ω * d (r2) / dt = 2 * m * ω * dr / dt

Отсюда:

Fк = 2 * m * ω * vr

Но, во-первых, хотя в этом выводе работа не упоминается вообще, иного определения произведения силы на расстояние, чем работа в физике не существует. Следовательно остаётся только классическое понимание работы, которое немыслимо без усредняющего множителя скорости и соответственно пути (½). Поэтому в этом выводе сила Кориолиса так же, как и у Фейнмана завышена вдвое.

А, во-вторых, этот вывод построен на вопиющем математическом и физическом противоречии. Если после дифференцирования первое слагаемое в правой части (dr / dt = vт) принимается за тангенциальную скорость, образующуюся вдоль вектора силы, то в оставшемся после упразднения выражения ([dr / dt * mv] = 0) окончательном выражении, то же самое выражение для того же самого радиуса принимается уже за радиальную скорость (dr / dt = vr). Причём в обеих частях уравнения моментов, что не имеет физического смысла ни для работы, ни для правила рычага. Это математическая абстракция и физический абсурд!

В отсутствие поддерживающей вращение силы, угловая скорость, например, при увеличении радиуса уменьшается. Поэтому поддерживающей силе приходится компенсировать эти потери, восстанавливая линейную скорость до прежнего значения. На это уходит половина поддерживающей силы, реакция на которую составляет половину классической силы Кориолиса.

Однако поскольку эти силы полностью скомпенсированы, то скомпенсированы и их реакции. Следовательно, эта уравновешенная часть поддерживающей силы не может определять силу Кориолиса, и совместно с истинной силой Кориолиса (см. гл. 3.4.2.) определяет лишь внутреннее напряжение ускоряющейся замкнутой системы тело—физический радиус (направляющая), которое естественно не определяет ускорение самой системы.

Далее, после полного восстановления линейной скорости, угловая скорость с учётом увеличившегося радиуса, всё ещё остаётся невосстановленной. При этом вторая половина поддерживающей силы, как раз и затрачивается на увеличение линейной скорости свыше её прежнего значения, за счёт чего окончательно восстанавливается и угловая скорость. Реакция на эту неуравновешенную половину поддерживающей силы и определяет силу Кориолиса, которая, таким образом вдвое меньше полной поддерживающей силы.

Аналогичный процесс происходит и при уменьшении радиуса. Подробное теоретическое обоснование равенства затрат обеих частей поддерживающей силы и структуры этих затрат приведено в главе (4.2.) в выводе силы и ускорения Кориолиса через мерный радиан.

Используя абсолютно правильный абстрактно-символьный математический аппарат, Фейнман допустил физическую ошибку в наиболее простой и доступной для понимания области физики – механике, в которой все физические законы и физические величины уже достаточно достоверно представлены в математике в виде символов, знаков и формул, представляющих собой алфавит и грамматику языка физики – математики. И уж тем более голая абстрактно-символьная математика без физики бессильна в тех областях физики, где алфавит и грамматика языка физики ещё окончательно не сложились.

Таким образом, сам по себе правильный абстрактно-символьный математический аппарат бессилен в изучении природы, если он идёт вразрез с физическим смыслом, т.е. с философией природы в целом. Вывод Фейнмана – это даже не подгонка под ответ, это фундаментальная ошибка классической науки, как в математике, так и в физике. Это нарушение Закона сохранения истины, стоящего на охране всех остальных законов природы.

Если бы современные физики не были бы столь повально и бездумно увлечены голой математикой, то сила Кориолиса не была бы такой странной и загадочной в современной физике. И в ней давно бы нашлось место Истинной силе Кориолиса—Кеплера, которая объективно определяет сущность явления Кориолиса.


***

Единственно правильное уравнение динамики вращательного движения имеет вид:

 (r) = m * ω * dr (t) / dt (4.2.13)

По внешнему виду уравнение (4.2.13) абсолютно идентично второму закону Ньютона, а уравнением динамики вращательного движения оно становится после приведения его к мерному радиану (rо = 1 [мо]). В уравнении (4.2.13) фактически произведена равноценная замена переменной (ω (t)) на переменную (r (t)). Такая замена вполне правомерна и физически и математически. При этом в радиальной системе отсчёта сила Кориолиса, выраженная через мерное вращение равна:

рад = m * ωрад * V» (4.2.14)

где V»: – абстрактная для приведённого вращения с постоянным радиусом радиальная скорость

Уравнение (4.2.14) соответствует традиционному виду классического выражения для силы Кориолиса только без «двойки», но пока они идентичны только по общему виду. Для того чтобы убедиться в полной идентичности этих уравнений осталось показать, что:

ωрад * V» = ωе * Vr

То есть необходимо показать, что угловая скорость приведённого вращения эквивалентна переносной угловой скорости, а абстрактная, т.е. несуществующая для приведённого вращения с постоянным радиусом радиальная скорость, всё же косвенно эквивалентна реальной радиальной скорости относительного движения. Вообще говоря, это автоматически следует из приведения выражения (4.2.3) к традиционному виду, показанного выше в настоящей главе. Но для скептиков покажем это другим строго математическим способом.

Из мерной динамики вращательного движения следует:

ωрад / ωе = r / rо (*)

Радиусы можно представить, как произведение радиальной скорости на время (Vr * t):

t * V/ (t * V») = r / rо

Следовательно, для того чтобы любая заданная радиальная скорость относительного движения в любом заданном интервале времени поворотного движения была бы эквивалентна абстрактной радиальной скорости приведённого вращения, должно соблюдаться соотношение, полученное после сокращения последнего выражения на время (t):

V/ V» = r / rо

Тогда, учитывая (*) получим:

ωрад / ωе = V/ V»

Но это есть не что иное, как:

ωрад * V» = ωе * Vr

Следовательно:

рад = m * ωрад * V» = m * ω * V

Что и требовалось показать (ЧТП)!

***

Некоторые современные авторы в отношении величины силы и ускорения Кориолиса имеют точку зрения, сходную с нашей моделью поворотного движения. Однако наши взгляды на природу явления Кориолиса расходятся, тем не менее, и с ними. Наиболее близки к нашей точке зрения на явление Кориолиса авторы из Удмуртии (maholet.aero.ru), они пишут:

Применение теоремы Кориолиса для свободного движения (например, планеты) не соответствует закону сохранения энергии.

Ускорение у Кориолиса завышено в 2 раза ошибкой при взятии производной вектора переносной скорости, из—за отрыва от физики.

Сила Кориолиса (при движении в трубке) количественно верна, но не обоснована физически (жирный шрифт наш). Половина силы Кориолиса, действительно, является силой инерции: при приближении к центру вращения тело тормозится трубкой, при удалении – разгоняется. Другая же половина силы обусловлена действием центробежной силы, точнее, её проекцией на направление, перпендикулярное радиусу движения в плоскости орбиты (о ней будем говорить далее). Эта половина силы не даёт ускорения – не позволяет трубка. Сила Кориолиса – это сумма двух различных сил».

Мы не согласны с авторами «Махолета» в их трактовке статической части поддерживающей силы, т.к. она обусловлена не центробежной силой, а именно внешней тангенциальной закручивающей силой, поддерживающей вращение на неизменном уровне и истинной силой Кориолиса. Не трубка нейтрализует половину поддерживающей силы Кориолиса, т.к. в отсутствие истинной силы Кориолиса ничто в принципе не мешает такой силе ускорить и саму трубку, а истинная сила Кориолиса.

Более подробно работа авторов из Удмуртии рассматривается в главе 10.

Другая версия, по некоторым параметрам сходная с нашей точкой зрения изложена в статье КОРИОЛИСОВА СИЛА И КОРИОЛИСОВО УСКОРЕНИЕ Канарёва Ф. М. от 2.06.2010 г., источник: SciTecLibrary.ru. (E—mail: kanphil@mail.ru). Более подробно работа Канарёва также рассмотрена в главе 10.

На сегодняшний день мы узнали только о двух авторах, которые в той или иной степени близки нам по взглядам на явление Кориолиса. Однако ни у кого из них нет чёткого представления о физическом смысле явления Кориолиса. Во всяком случае, в своих работах они его чётко не излагают.

Канарев Ф. М. сам ещё не определился, какую версию он считает правильной. Его статья больше похожа на размышления вслух, чем на научную работу. Интуиция учёного подсказывает ему, что что—то не так в классической модели поворотного движения. Однако пока что он не нашёл правильного решения проблемы. Не вяжется у Канарёва и с направлениями силы и ускорения Кориолиса. Поэтому мы с нетерпением ждём продолжения его статьи, в котором он намеревался представить коррекцию кинематики сложного движения.

PS: Недавно продолжение статьи появилось, но к сожалению в нём Канарев Ф. М. допускает всё те же ошибки, что и в первой статье. Физический смысл явления Кориолиса так и остался не раскрытым. Анализ новой статьи см. в главе 10.

Удвоение силы вовсе не обязательно связано с удвоением ускорения. Причина удвоения классической силы (напряжения) Кориолиса прояснена в нашей версии явления Кориолиса. В классическом поворотном движении с постоянной угловой скоростью удвоение классического напряжения Кориолиса обеспечивает истинная сила Кориолиса, которую приходится компенсировать при сохранении неизменной угловой скорости. Канарёв не разделяет силу Кориолиса на статическую и динамическую часть. В этом отношении нашими единомышленниками являются только авторы «Махолета, да и то только в некотором приближении.

К сожалению, никто из авторов этих двух работ не представил своего видения природы явления Кориолиса на уровне его физического механизма. Тем не менее, обнадеживает тот факт, что не всех устраивает классическая версия поворотного движения, т.е. основания для сомнений в ее непогрешимости все же есть. Люди, для которых истина важнее опасений навредить своей репутации подвергая сомнению прописные с точки зрения официальной науки истины и важнее званий, все—таки не скрывают своего видения противоречий классической физики и в частности в поворотном движении. Таким образом, мы, по крайней мере, не одиноки в своих сомнениях.

Совпадение величины силы (напряжения) Кориолиса с ее классическим теоретическим значением, рассчитанным по неправильному линейному приращению можно, конечно же, отнести и к случайным совпадениям. Однако для большинства авторов, повторяющих классический вывод, это фактически банальная подгонка под ответ. Кто—то однажды допустил ошибку, приняв на веру абсурдную классическую динамику вращательного движения, а потом под напряжение Кориолиса, которое возможно было подтверждено экспериментально, подвели теорию. При этом все последующие авторы в своих выводах учитывали лишь авторитет предшественников и исторически сложившееся научное мнение.

Ошибка определения ускорения поворотного движения прочно вошла в математический метод дифференцирования криволинейного движения по приращению его координат. А может быть, она только закрепила это ошибочное дифференцирование. Приращение скорости это всегда приращение расстояния, пройденного с ускорением, но приращение координат не всегда соответствует приращению этого расстояния. Поэтому вторая производная от приращения координат не всегда соответствует реальному геометрическому ускорению криволинейного движения. Классическое дифференцирование приращения криволинейного движения этого не учитывает, что диктует необходимость пересмотра динамики и кинематики сложного движения в классической физике.