An observer endued with an infinite range of vision, and placed in that unknown centre around which the entire world revolves, might have beheld myriads of atoms filling all space during the chaotic epoch of the universe. Little by little, as ages went on, a change took place; a general law of attraction manifested itself, to which the hitherto errant atoms became obedient: these atoms combined together chemically according to their affinities, formed themselves into molecules, and composed those nebulous masses with which the depths of the heavens are strewed.
These masses became immediately endued with a rotary motion around their own central point. This centre, formed of indefinite molecules, began to revolve round its own axis during its gradual condensation; then, following the immutable laws of mechanics, in proportion as its bulk diminished by condensation, its rotary motion became accelerated, and these two effects continuing, the result was the formation of one principal star, the centre of the nebulous mass.
By attentively watching, the observer would then have perceived the other molecules of the mass, following the example of this central star, become likewise condensed by gradually accelerated rotation, and gravitating round it in the shape of innumerable stars. Thus was formed the Nebulæ, of which astronomers have reckoned up nearly 5000.
Amongst these 5000 nebulæ there is one which has received the name of the Milky Way, and which contains eighteen millions of stars, each of which has become the centre of a solar world.
If the observer had then specially directed his attention to one of the more humble and less brilliant of these stellar bodies, a star of the fourth class, that which is arrogantly called the Sun, all the phenomena to which the formation of the Universe is to be ascribed would have been successively fulfilled before his eyes. In fact, he would have perceived this sun, as yet in the gaseous state, and composed of moving molecules, revolving round its axis in order to accomplish its work of concentration. This motion, faithful to the laws of mechanics, would have been accelerated with the diminution of its volume; and a moment would have arrived when the centrifugal force would have overpowered the centripetal, which causes the molecules all to tend towards the centre.
Another phenomenon would now have passed before the observer's eye, and the molecules situated on the plane of the equator escaping, like a stone from a sling of which the cord had suddenly snapped, would have formed around the sun sundry concentric rings resembling that of Saturn. In their turn, again, these rings of cosmical matter, excited by a rotary motion round the central mass, would have been broken up and decomposed into secondary nebulosities, that is to say, into planets. Similarly he would have observed these planets throw off one or more rings each, which became the origin of the secondary bodies which we call satellites.
Thus, then, advancing from atom to molecule, from molecule to nebulous mass, from that to a principal star, from star to sun, from sun to planet, and hence to satellite, we have the whole series of transformations undergone by the heavenly bodies during the first days of the world.
Now, of those attendant bodies which the sun maintains in their elliptical orbits by the great law of gravitation, some few in their turn possess satellites. Uranus has eight, Saturn eight, Jupiter four, Neptune possibly three, and the Earth one. This last, one of the least important of the entire solar system, we call the Moon; and it is she whom the daring genius of the Americans professed their intention of conquering.
The moon, by her comparative proximity, and the constantly varying appearances produced by her several phases, has always occupied a considerable share of the attention of the inhabitants of the earth.
From the time of Thales of Miletus, in the fifth century b. c., down to that of Copernicus in the fifteenth and Tycho Brahé in the sixteenth century a. d., observations have been from time to time carried on with more or less correctness, until in the present day the altitudes of the lunar mountains have been determined with exactitude. Galileo explained the phenomena of the lunar light produced during certain of her phases by the existence of mountains, to which he assigned a mean altitude of 27,000 feet. After him Hévelius, an astronomer of Dantzic, reduced the highest elevations to 15,000 feet; but the calculations of Riccioli brought them up again to 21,000 feet.
At the close of the eighteenth century Herschell, armed with a powerful telescope, considerably reduced the preceding measurements. He assigned a height of 11,400 feet to the maximum elevations, and reduced the mean of the different altitudes to little more than 2400 feet. But Herschell's calculations were in their turn corrected by the observations of Halley, Nasmyth, Bianchini, Gruithuysen, and others; but it was reserved for the labours of Bœer and Mædler finally to solve the question. They succeeded in measuring 1905 different elevations, of which six exceed 15,000 feet, and twenty-two exceed 14,400 feet. The highest summit of all towers to a height of 22,606 feet above the surface of the lunar disc. At the same period the examination of the moon was completed. She appeared completely riddled with craters, and her essentially volcanic character was apparent at each observation. By the absence of refraction in the rays of the planets occulted by her we conclude that she is absolutely devoid of an atmosphere. The absence of air entails the absence of water. It became, therefore, manifest that the Selenites, to support life under such conditions, must possess a special organization of their own, must differ remarkably from the inhabitants of the earth.
At length, thanks to modern art, instruments of still higher perfection searched the moon without intermission, not leaving a single point of her surface unexplored; and notwithstanding that her diameter measures 2150 miles, her surface equals the 1-15th part of that of our globe, and her bulk the 1-49th part of that of the terrestrial spheroid – not one of her secrets was able to escape the eyes of the astronomers; and these skilful men of science carried to even greater degree their prodigious observations.
Thus they remarked that, during full moon, the disc appeared scored in certain parts with white lines; and, during the phases, with black. On prosecuting the study of these with still greater precision, they succeeded in obtaining an exact account of the nature of these lines. They were long and narrow furrows sunk between parallel ridges, bordering generally upon the edges of the craters. Their length varied between ten and 100 miles, and their width was about 1600 yards. Astronomers called them chasms, but they could not get any farther. Whether these chasms were the dried-up beds of ancient rivers or not they were unable thoroughly to ascertain.
The Americans, amongst others, hoped one day or other to determine this geological question. They also undertook to examine the true nature of that system of parallel ramparts discovered on the moon's surface by Gruithuysen, a learned professor of Munich, who considered them to be "a system of fortifications thrown up by the Selenitic engineers." These two points, yet obscure, as well as others, no doubt, could not be definitively settled except by direct communication with the moon.
Regarding the degree of intensity of its light, there was nothing more to learn on this point. It was known that it is 300,000 times weaker than that of the sun, and that its heat has no appreciable effect upon the thermometer. As to the phenomenon known as the "ashy light," it is explained naturally by the effect of the transmission of the solar rays from the earth to the moon, which give the appearance of completeness to the lunar disc, while it presents itself under the crescent form during its first and last phases.
Such was the state of knowledge acquired regarding the earth's satellite, which the Gun Club undertook to perfect in all its aspects, cosmographic, geological, political, and moral.
The immediate result of Barbicane's proposition was to place upon the orders of the day all the astronomical facts relative to the Queen of Night. Everybody set to work to study assiduously. One would have thought that the moon had just appeared for the first time, and that no one had ever before caught a glimpse of her in the heavens. The papers revived all the old anecdotes in which the "sun of the wolves" played a part; they recalled the influences which the ignorance of past ages ascribed to her; in short, all America was seized with seleno-mania, or had become moon-mad.
The scientific journals, for their part, dealt more especially with the questions which touched upon the enterprise of the Gun Club. The letter of the Observatory of Cambridge was published by them, and commented upon with unreserved approval.
Until that time most people had been ignorant of the mode in which the distance which separates the moon from the earth is calculated. They took advantage of this fact to explain to them that this distance was obtained by measuring the parallax of the moon. The term parallax proving "caviare to the general," they further explained that it meant the angle formed by the inclination of two straight lines drawn from either extremity of the earth's radius to the moon. On doubts being expressed as to the correctness of this method, they immediately proved that not only was the mean distance 234,347 miles, but that astronomers could not possibly be in error in their estimate by more than 70 miles either way.
To those who were not familiar with the motions of the moon, they demonstrated that she possesses two distinct motions, the first being that of rotation upon her axis, the second that of revolution round the earth, accomplishing both together in an equal period of time, that is to say, in 27⅓ days.
The motion of rotation is that which produces day and night on the surface of the moon; save that there is only one day and one night in the lunar month, each lasting 354⅓ hours. But, happily for her, the face turned towards the terrestrial globe is illuminated by it with an intensity equal to the light of fourteen moons. As to the other face, always invisible to us, it has of necessity 354 hours of absolute night, tempered only by that "pale glimmer which falls upon it from the stars."
Some well-intentioned but rather obstinate persons, could not at first comprehend how, if the moon displays invariably the same face to the earth during her revolution, she can describe one turn round herself. To such they answered, "Go into your dining-room, and walk round the table in such a way as always to keep your face turned towards the centre; by the time you will have achieved one complete round you will have completed one turn round yourself, since your eye will have traversed successively every point of the room. Well, then, the room is the heavens, the table is the earth, and the moon is yourself." And they would go away delighted.
So, then, the moon displays invariably the same face to the earth; nevertheless, to be quite exact, it is necessary to add that, in consequence of certain fluctuations of north and south, and of west and east, termed her libration, she permits rather more than the half, that is to say, five-sevenths, to be seen.
As soon as the ignoramuses came to understand as much as the Director of the Observatory himself knew, they began to worry themselves regarding her revolution round the earth, whereupon twenty scientific reviews immediately came to the rescue. They pointed out to them then that the firmament, with its infinitude of stars, may be considered as one vast dial-plate, upon which the moon travels, indicating the true time to all the inhabitants of the earth; that it is during this movement that the Queen of Night exhibits her different phases; that the moon is full when she is in opposition with the sun, that is when the three bodies are on the same straight line, the earth occupying the centre; that she is new when she is in conjunction with the sun, that is, when she is between it and the earth; and lastly, that she is in her first or last quarter, when she makes with the sun and the earth an angle of which she herself occupies the apex.
Regarding the altitude which the moon attains above the horizon, the letter of the Cambridge Observatory had said all that was to be said in that respect. Every one knew that this altitude varies according to the latitude of the observer. But the only zones of the globe in which the moon passes the zenith, that is, the point directly over the head of the spectator, are of necessity comprised between the twenty-eighth parallels and the equator. Hence the importance of the advice to try the experiment upon some point of that part of the globe, in order that the projectile might be discharged perpendicularly, and so the soonest escape the action of gravitation. This was an essential condition to the success of the enterprise, and continued actively to engage the public attention.
Regarding the path described by the moon in her revolution round the earth, the Cambridge Observatory had demonstrated that this path is a re-entering curve, not a perfect circle, but an ellipse, of which the earth occupies one of the foci. It was also well understood that it is farthest removed from the earth during its apogee, and approaches most nearly to it at its perigee.
Such then was the extent of knowledge possessed by every American on the subject, and of which no one could decently profess ignorance. Still, while these true principles were being rapidly disseminated many errors and illusory fears proved less easy to eradicate.
For instance, some worthy persons maintained that the moon was an ancient comet which, in describing its elongated orbit round the sun, happened to pass near the earth, and became confined within her circle of attraction. These drawing-room astronomers professed so to explain the charred aspect of the moon – a disaster which they attributed to the intensity of the solar heat; only, on being reminded that comets have an atmosphere, and that the moon has little or none, they were fairly at a loss for a reply.
Others again, belonging to the doubting class expressed certain fears as to the position of the moon. They had heard it said that, according to observations made in the time of the Caliphs, her revolution had become accelerated in a certain degree. Hence they concluded, logically enough, that an acceleration of motion ought to be accompanied by a corresponding diminution in the distance separating the two bodies; and that, supposing the double effect to be continued to infinity, the moon would end by one day falling into the earth. However, they became reassured as to the fate of future generations on being apprised that, according to the calculations of Laplace, this acceleration of motion is confined within very restricted limits, and that a proportional diminution of speed will be certain to succeed it. So, then, the stability of the solar system would not be deranged in ages to come.
There remains but the third class, the superstitious. These worthies were not content merely to rest in ignorance; they must know all about things which had no existence whatever, and as to the moon, they had long known all about her. One set regarded her disc as a polished mirror, by means of which people could see each other from different points of the earth and interchange their thoughts. Another set pretended that out of one thousand new moons that had been observed, nine hundred and fifty had been attended with remarkable disturbances, such as cataclysms, revolutions, earthquakes, the deluge, &c. Then they believed in some mysterious influence exercised by her over human destinies – that every Selenite was attached to some inhabitant of the earth by a tie of sympathy; they maintained that the entire vital system is subject to her control, &c., &c. But in time the majority renounced these vulgar errors, and espoused the true side of the question. As for the Yankees, they had no other ambition than to take possession of this new continent of the sky, and to plant upon the summit of its highest elevation the star-spangled banner of the United States of America.
О проекте
О подписке