But a study of the tides at different ports fails to realize this expectation. At some ports, no doubt, the tide is high when the moon is on the meridian. In that case, of course, the high water is under the moon, as apparently ought to be the case invariably, on a superficial view. But, on the other hand, there are ports where there is often low water when the moon is crossing the meridian. Yet other ports might be cited in which every intermediate phase could be observed. If the theory of the tides was to be the simple one so often described, then at every port noon should be the hour of high water on the day of the new moon or of the full moon, because then both tide-exciting bodies are on the meridian at the same time. Even if the friction retarded the great tidal wave uniformly, the high tide on the days of full or change should always occur at fixed hours; but, unfortunately, there is no such delightful theory of the tides as this would imply. At Greenock no doubt there is high water at or about noon on the day of full or change; and if it could be similarly said that on the day of full or change there was high water everywhere at local noon, then the equilibrium theory of the tides, as it is called, would be beautifully simple. But this is not the case. Even around our own coasts the discrepancies are such as to utterly discredit the theory as offering any practical guide. At Aberdeen the high tide does not appear till an hour later than the doctrine would suggest. It is two hours late at London, three at Tynemouth, four at Tralee, five at Sligo, and six at Hull. This last port would be indeed the haven of refuge for those who believe that the low tide ought to be under the moon. At Hull this is no doubt the case; and if at all other places the water behaved as it does at Hull, why then, of course, it would follow that the law of low water under the moon was generally true. But then this would not tally with the condition of affairs at the other places I have named; and to complete the cycle I shall add a few more. At Bristol the high water does not get up until seven hours after the moon has passed the meridian, at Arklow the delay is eight hours, at Yarmouth it is nine, at the Needles it is ten hours, while lastly, the moon has nearly got back to the meridian again ere it has succeeded in dragging up the tide on which Liverpool's great commerce so largely depends.
Nor does the result of studying the tides along other coasts beside our own decide more conclusively on the mooted point. Even ports in the vast ocean give a very uncertain response. Kerguelen Island and Santa Cruz might seem to prove that the high tide occurs under the moon, but unfortunately both Fiji and Ascension seem to present us with an equally satisfactory demonstration, that beneath the moon is the invariable home of low water.
I do not mean to say that the study of the tides is in other respects such a confused subject as the facts I have stated would seem to indicate. It becomes rather puzzling, no doubt, when we compare the tides at one port with the tides elsewhere. The law and order are, then, by no means conspicuous, they are often hardly discernible. But when we confine our attention to the tides at a single port, the problem becomes at once a very intelligible one. Indeed, the investigation of the tides is an easy subject, if we are contented with a reasonably approximate solution; should, however, it be necessary to discuss fully the tides at any port, the theory of the method necessary for doing so is available, and a most interesting and beautiful theory it certainly is.
Let us then speak for a few moments about the methods by which we can study the tides at a particular port. The principle on which it is based is a very simple one.
It is the month of August, the 18th, we shall suppose, and we are going to enjoy a delicious swim in the sea. We desire, of course, to secure a high tide for the purpose of doing so, and we call an almanac to help us. I refer to the Thom's Dublin Directory, where I find the tide to be high at 10h. 14m. on the morning of the 18th of August. That will then be the time to go down to the baths at Howth or Kingstown.
But what I am now going to discourse to you about is not the delights of sea-bathing, it is rather a different inquiry. I want to ask, How did the people who prepared that almanac know years beforehand, that on that particular day the tide would be high at that particular hour? How do they predict for every day the hour of high water? and how comes it to pass that these predictions are invariably correct?
We first refer to that wonderful book, the Nautical Almanac. In that volume the movements of the moon are set forth with full detail; and among other particulars we can learn on page iv of every month the mean time of the moon's meridian passage. It appears that on the day in question the moon crossed the meridian at 11h. 23m. Thus we see there was high water at Dublin at 10h. 14m., and 1h. 9m. later, that is, at 11h. 23m., the moon crossed the meridian.
Let us take another instance. There is a high tide at 3.40 P.M. on the 25th August, and again the infallible Nautical Almanac tells us that the moon crossed the meridian at 5h. 44m., that is, at 2h. 4m. after the high water.
In the first case the moon followed the tide in about an hour, and in the second case the moon followed in about two hours. Now if we are to be satisfied with a very rough tide rule for Dublin, we may say generally that there is always a high tide an hour and a half before the moon crosses the meridian. This would not be a very accurate rule, but I can assure you of this, that if you go by it you will never fail of finding a good tide to enable you to enjoy your swim. I do not say this rule would enable you to construct a respectable tide-table. A ship-owner who has to creep up the river, and to whom often the inches of water are material, will require far more accurate tables than this simple rule could give. But we enter into rather complicated matters when we attempt to give any really accurate methods of computation. On these we shall say a few words presently. What I first want to do, is to impress upon you in a simple way the fact of the relation between the tide and the moon.
To give another illustration, let us see how the tides at London Bridge are related to the moon. On Jan. 1st, 1887, it appeared that the tide was high at 6h. 26m. P.M., and that the moon had crossed the meridian 56m. previously; on the 8th Jan. the tide was high at 0h. 43m. P.M., and the moon had crossed the meridian 2h. 1m. previously. Therefore we would have at London Bridge high water following the moon's transit in somewhere about an hour and a half.
I choose a day at random, for example—the 12th April. The moon crosses the upper meridian at 3h. 39m. A.M., and the lower meridian at 4h 6m. P.M. Adding an hour and a half to each would give the high tides at 5h 9m. A.M. and 5h. 36m. P.M.; as a matter of fact, they are 4h. 58m. A.M. and 5h. 20m. P.M.
But these illustrations are sufficient. We find that at London, in a general way, high water appears at London Bridge about an hour and a half after the moon has passed the meridian of London. It so happens that the interval at Dublin is about the same, i.e. an hour and a half; only that in the latter case the high water precedes the moon by that interval instead of following it. We may employ the same simple process at other places. Choose two days about a week distant; find on each occasion the interval between the transit of the moon and the time of high water, then the mean of these two differences will always give some notion of the interval between high water and the moon's transit. If then we take from the Nautical Almanac the time of the moon's transit, and apply to it the correction proper for the port, we shall always have a sufficiently good tide-table to guide us in choosing a suitable time for taking our swim or our walk by the sea-side; though if you be the captain of a vessel, you will not be so imprudent as to enter port without taking counsel of the accurate tide-tables, for which we are indebted to the Admiralty.
Every one who visits the sea-side, or who lives at a sea-port, should know this constant for the tides, which affect him and his movements so materially. If he will discover it from his own experience, so much the better.
The first point to be ascertained is the time of high water. Do not take this from any local table; you ought to observe it for yourself. You will go to the pier head, or, better still, to some place where the rise and fall of the mere waves of the sea will not embarrass you in your work. You must note by your watch the time when the tide is highest. An accurate way of doing this will be to have a scale on which you can measure the height at intervals of five minutes about the time of high water. You will then be able to conclude the time at which the tide was actually at its highest point; but even if no great accuracy be obtainable, you can still get much interesting information, for you will without much difficulty be right within ten minutes or a quarter of an hour.
The correction for the port is properly called the “establishment,” this being the average time of high water on the days of full and change of the moon at the particular port in question.
We can considerably amend the elementary notion of the tides which the former method has given us, if we adopt the plan described by Dr. Whewell in the first four editions of the Admiralty Manual of Scientific Inquiry. We speak of the interval between the transit of the moon and the time of high water as the luni-tidal interval. Of course at full and change this is the same thing as the establishment, but for other phases of the moon the establishment must receive a correction before being used as the luni-tidal interval. The correction is given by the following table—
Thus at a port where the establishment was 3h. 25m., let us suppose that the transit of the moon took place at 6 P.M.; then we correct the establishment by -60m., and find the luni-tidal interval to be 2h. 25m., and accordingly the high water takes place at 8h. 25m. P.M.
But even this method is only an approximation. The study of the tides is based on accurate observation of their rise and fall on different places round the earth. To show how these observations are to be made, and how they are to be discussed and reduced when they have been made, I may refer to the last edition of the Admiralty Manual of Scientific Inquiry, 1886. For a complete study of the tides at any port a self-registering tide-gauge should be erected, on which not alone the heights and times of high and low water should be depicted, but also the continuous curve which shows at any time the height of the water. In fact, the whole subject of the practical observation and discussion and prediction of tides is full of valuable instruction, and may be cited as one of the most complete examples of the modern scientific methods.
In the first place, the tide-gauge itself is a delicate instrument; it is actuated by a float which rises and falls with the water, due provision being made that the mere influence of waves shall not make it to oscillate inconveniently. The motion of the float when suitably reduced by mechanism serves to guide a pencil, which, acting on the paper round a revolving drum, gives a faithful and unintermitting record of the height of the water.
Thus what the tide-gauge does is to present to us a long curved line of which the summits correspond to the heights of high water, while the depressions are the corresponding points of low water. The long undulations of this curve are, however, very irregular. At spring tides, when the sun and the moon conspire, the elevations rise much higher and the depressions sink much lower than they do at neap tides, when the high water raised by the moon is reduced by the action of the sun. There are also many minor irregularities which show the tides to be not nearly such simple phenomena as might be at first supposed. But what we might hastily think of as irregularities are, in truth, the most interesting parts of the whole phenomena. Just as in the observations of the planets the study of the perturbations has led us to results of the widest interest and instruction, so it is these minor phenomena of the tides which seem most pregnant with scientific interest.
The tide-gauge gives us an elaborate curve. How are we to interpret that curve? Here indeed a most beautiful mathematical theorem comes to our aid. Just as ordinary sounds consist of a number of undulations blended together, so the tidal wave consists of a number of distinct undulations superposed. Of these the ordinary lunar tide and the ordinary solar tide are the two principal; but there are also minor undulations, harmonics, so to speak, some originating from the moon, some originating from the sun, and some from both bodies acting in concert.
In the study of sound we can employ an acoustic apparatus for the purpose of decomposing any proposed note, and finding not only the main undulation itself, but the several superposed harmonics which give to the note its timbre. So also we can analyze the undulation of the tide, and show the component parts. The decomposition is effected by the process known as harmonic analysis. The principle of the method may be very simply described. Let us fix our attention on any particular “tide,” for so the various elements are denoted. We can always determine beforehand, with as much accuracy as we may require, what the period of that tide will be. For instance, the period of the lunar semi-diurnal tide will of course be half the average time occupied by the moon to travel round from the meridian of any place until it regains the same meridian; the period of the lunar diurnal tide will be double as great; and there are fortnightly tides, and others of periods still greater. The essential point to notice is, that the periods of these tides are given by purely astronomical considerations from the periods of the motions theory, and do not depend upon the actual observations.
We measure off on the curve the height of the tide at intervals of an hour. The larger the number of such measures that are available the better; but even if there be only three hundred and sixty or seven hundred and twenty consecutive hours, then, as shown by Professor G. H. Darwin in the Admiralty Manual already referred to, it will still be possible to obtain a very competent knowledge of the tides in the particular port where the gauge has been placed.
The art (for such indeed it may be described) of harmonic analysis consists in deducing from the hourly observations the facts with regard to each of the constituent tides. This art has been carried to such perfection, that it has been reduced to a very simple series of arithmetical operations. Indeed it has now been found possible to call in the aid of ingenious mechanism, by which the labours of computation are entirely superseded. The pointer of the harmonic analyzer has merely to be traced over the curve which the tide-gauge has drawn, and it is the function of the machine to decompose the composite undulation into its parts, and to exhibit the several constituent tides whose confluence gives the total result.
As if nothing should be left to complete the perfection of a process which, both from its theoretical and its practical sides, is of such importance, a machine for predicting tides has been designed, constructed, and is now in ordinary use. When by the aid of the harmonic analysis the effectiveness of the several constituent tides affecting a port have become fully determined, it is of course possible to predict the tides for that port. Each “tide” is a simple periodic rise and fall, and we can compute for any future time the height of each were it acting alone. These heights can all be added together, and thus the height of the water is obtained. In this way a tide-table is formed, and such a table when complete will express not alone the hours and heights of high water on every day, but the height of the water at any intervening hour.
The computations necessary for this purpose are no doubt simple, so far as their principle is concerned; but they are exceedingly tedious, and any process must be welcomed which affords mitigation of a task so laborious. The entire theory of the tides owes much to Sir William Thomson in the methods of observation and in the methods of reduction. He has now completed the practical parts of the subject by inventing and constructing the famous tide-predicting engine.
The principle of this engine is comparatively simple. There is a chain which at one end is fixed, and at the other end carries the pencil which is pressed against the revolving drum on which the prediction is to be inscribed. Between its two ends the chain passes up and down over pulleys. Each pulley corresponds to one of the “tides,” and there are about a dozen altogether, some of which exercise but little effect. Of course if the centres of the pulleys were all fixed the pen could not move, but the centre of each pulley describes a circle with a radius proportional to the amplitude of the corresponding tide, and in a time proportional to the period of that tide. When these pulleys are all set so as to start at the proper phases, the motion is produced by turning round a handle which makes the drum rotate, and sets all the pulleys in motion. The tide curve is thus rapidly drawn out; and so expeditious is the machine, that the tides of a port for an entire year can be completely worked out in a couple of hours.
Бесплатно
Установите приложение, чтобы читать эту книгу бесплатно
О проекте
О подписке