Читать бесплатно книгу «The Principles of Biology, Volume 1 (of 2)» Herbert Spencer полностью онлайн — MyBook

CHAPTER III.
THE RE-ACTIONS OF ORGANIC MATTER ON FORCES

§ 17. Re-distributions of Matter imply concomitant re-distributions of Motion. That which under one of its aspects we contemplate as an alteration of arrangement among the parts of a body, is, under a correlative aspect, an alteration of arrangement among certain momenta, whereby these parts are impelled to their new positions. At the same time that a force, acting differently on the different units of an aggregate, changes their relations to one another; these units, reacting differently on the different parts of the force, work equivalent changes in the relations of these to one another. Inseparably connected as they are, these two orders of phenomena are liable to be confounded together. It is very needful, however, to distinguish between them. In the last chapter we took a rapid survey of the re-distributions which forces produce in organic matter; and here we must take a like survey of the simultaneous re-distributions undergone by the forces.

At the outset we are met by a difficulty. The parts of an inorganic mass undergoing re-arrangement by an incident force, are in most cases passive – do not complicate those necessary re-actions that result from their inertia, by other forces which they themselves originate. But in organic matter the re-arranged parts do not re-act in virtue of their inertia only. They are so constituted that an incident force usually sets up in them other actions which are much more important. Indeed, what we may call the indirect reactions thus caused, are so great in their amounts compared with the direct re-actions, that they quite obscure them.

The impossibility of separating these two kinds of reaction compels us to disregard the distinction between them. Under the above general title, we must include both the immediate re-actions and those re-actions mediately produced, which are among the most conspicuous of vital phenomena.

§ 18. From organic matter, as from all other matter, incident forces call forth that re-action which we know as heat. More or less of molecular vibration necessarily results when, to the forces at work among the molecules of any aggregate, other forces are added. Experiment abundantly demonstrates this in the case of inorganic masses; and it must equally hold in the case of organic masses. In both cases the force which, more markedly than any other, produces this thermal re-action, is that which ends in the union of different substances. Though inanimate bodies admit of being greatly heated by pressure and by the electric current, yet the evolutions of heat, thus induced are neither so common, nor in most cases so conspicuous, as those resulting from chemical combination. And though in animate bodies there are certain amounts of heat generated by other actions, yet these are secondary to the heat generated by the action of oxygen on the substances composing the tissues and the substances contained in them. Here, however, we see one of the characteristic distinctions between inanimate and animate bodies. Among the first there are but few which ordinarily exist in a condition to evolve the heat caused by chemical combination; and such as are in this condition soon cease to be so when chemical combination and genesis of heat once begin in them. Whereas, among the second there universally exists the ability, more or less decided, thus to evolve heat; and the evolution of heat, in some cases very slight and in no cases very great, continues as long as they remain animate bodies.

The relation between active change of matter and re-active genesis of molecular vibration, is clearly shown by the contrasts between different organisms, and between different states and parts of the same organism. In plants the genesis of heat is extremely small, in correspondence with their extremely small production of carbonic acid: those portions only, as flowers and germinating seeds, in which considerable oxidation is going on, having decidedly raised temperatures. Among animals we see that the hot-blooded are those which expend much force and respire actively. Though insects are scarcely at all warmer than the surrounding air when they are still, they rise several degrees above it when they exert themselves; and in mammals, which habitually maintain a temperature much higher than that of their medium, exertion is accompanied by an additional production of heat.

This molecular agitation accompanies the falls from unstable to stable molecular combinations; whether they be those from the most complex to the less complex compounds, or whether they be those ultimate falls which end in fully oxidized and relatively simple compounds; and whether they be those of the nitrogenous matters composing the tissues or those of the non-nitrogenous matters diffused through them. In the one case as in the other, the heat must be regarded as a concomitant. Whether the distinction, originally made by Liebig, between nitrogenous substances as tissue-food and non-nitrogenous substances as heat-food, be true or not in a narrower sense, it cannot be accepted in the sense that tissue-food is not also heat-food. Indeed he does not himself assert it in this sense. The ability of carnivorous animals to live and generate heat while consuming matter that is almost exclusively nitrogenous, suffices to prove that the nitrogenous compounds forming the tissues are heat-producers, as well as the non-nitrogenous compounds circulating among and through the tissues: a conclusion which is indeed justified by the fact that nitrogenous substances out of the body yield heat, though not a large amount, during combustion. But most likely this antithesis is not true even in the more restricted sense. The probability is that the hydrocarbons and carbo-hydrates which, in traversing the system, are transformed by communicated chemical action, evolve, during their transformation, not heat alone but also other kinds of force. It may be that as the nitrogenous matter, while falling into more stable molecular arrangements, generates both that molecular agitation called heat and such other molecular movements as are resolved into forces expended by the organism; so, too, does the non-nitrogenous matter. Or perhaps the concomitants of this metamorphosis of non-nitrogenous matter vary with the conditions. Heat alone may result when it is transformed while in the circulating fluids, but partly heat and partly another force when it is transformed in some active tissue that has absorbed it; just as coal, though producing little else but heat as ordinarily burnt, has its heat partially transformed into mechanical motion if burnt in a steam-engine furnace. In such case the antithesis of Liebig would be reduced to this – that whereas nitrogenous substance is tissue-food both as material for building-up tissue and as material for its function; non-nitrogenous substance is tissue-food only as material for function.

There can be no doubt that this thermal re-action which chemical action from moment to moment produces in the body, is from moment to moment an aid to further chemical action. We before saw (First Principles, § 100) that a state of raised molecular vibration is favourable to those re-distributions of matter and motion which constitute Evolution. We saw that in organisms distinguished by the amount and rapidity of such re-distributions, this raised state of molecular vibration is conspicuous. And we here see that this raised state of molecular vibration is itself a continuous consequence of the continuous molecular re-distributions it facilitates. The heat generated by each increment of chemical change makes possible the succeeding increment of chemical change. In the body this connexion of phenomena is the same as we see it to be out of the body. Just as in a burning piece of wood, the heat given out by the portion actually combining with oxygen, raises the adjacent portion to a temperature at which it also can combine with oxygen; so, in a living animal, the heat produced by oxidation of each portion of organized or unorganized substance, maintains the temperature at which the unoxidized portions can be readily oxidized.

§ 19. Among the forces called forth from organisms by re-action against the actions to which they are subject, is Light. Phosphorescence is in some few cases displayed by plants – especially by certain fungi. Among animals it is comparatively common. All know that there are several kinds of luminous insects; and many are familiar with the fact that luminosity is a characteristic of various marine creatures.

Much of the evidence is supposed to imply that this evolution of light, like the evolution of heat, is consequent on oxidation of the tissues or of matters contained in them. Light, like heat, is the expression of a raised state of molecular vibration: the difference between them being a difference in the rates of vibration. Hence it seems inferable that by chemical action on substances contained in the organism, heat or light may be produced, according to the character of the resulting molecular vibrations. Some experimental evidence supports this view. In phosphorescent insects, the continuance of the light is found to depend on the continuance of respiration; and any exertion which renders respiration more active, increases the brilliancy of the light. Moreover, by separating the luminous matter, Prof. Matteucci has shown that its emission of light is accompanied by absorption of oxygen and escape of carbonic acid. The phosphorescence of marine animals has been referred to other causes than oxidation; but it may perhaps be explicable without assuming any more special agency. Considering that in creatures of the genus Noctiluca, for example, to which the phosphorescence most commonly seen on our own coasts is due, there is no means of keeping up a constant circulation, we may infer that the movements of aerated fluids through their tissues, must be greatly affected by impulses received from without. Hence it may be that the sparkles visible at night when the waves break gently on the beach, or when an oar is dipped into the water, are called forth from these creatures by the concussion, not because of any unknown influence it excites, but because, being propagated through their delicate tissues, it produces a sudden movement of the fluids and a sudden increase of chemical action.

Nevertheless, in other phosphorescent animals inhabiting the sea, as in the Pyrosoma and in certain Annelida, light seems to be produced otherwise than by direct re-action on the action of oxygen. Indeed, it needs but to recall the now familiar fact that certain substances become luminous in the dark after exposure to sunlight, to see that there are other causes of light-emission.

§ 20. The re-distributions of inanimate matter are habitually accompanied by electrical disturbances; and there is abundant evidence that electricity is generated during those re-distributions of matter that are ever taking place in organisms. Experiments have shown "that the skin and most of the internal membranes are in opposite electrical states;" and also that between different internal organs, as the liver and the stomach, there are electrical contrasts: such contrasts being greatest where the processes going on in the compared parts are most unlike. It has been proved by du Bois-Reymond that when any point in the longitudinal section of a muscle is connected by a conductor with any point in its transverse section, an electric current is established; and further, that like results occur when nerves are substituted for muscles. The special causes of these phenomena have not yet been determined. Considering that the electric contrasts are most marked where active secretions are going on – considering, too, that they are difficult to detect where there are no appreciable movements of liquids – considering, also, that even when muscles are made to contract after removal from the body, the contraction inevitably causes movements of the liquids still contained in its tissues; it may be that they are due simply to the friction of heterogeneous substances, which is universally a cause of electric disturbance. But whatever be the interpretation, the fact remains the same: – there is throughout the living organism, an unceasing production of differences between the electric states of different parts; and, consequently, an unceasing restoration of electric equilibrium by the establishment of currents among these parts.

Besides these general, and not conspicuous, electrical phenomena common to all organisms, vegetal as well as animal, there are certain special and strongly marked ones. I refer, of course, to those which have made the Torpedo and the Gymnotus objects of so much interest. In these creatures we have a genesis of electricity which is not incidental on the performance of their different functions by the different organs; but one which is itself a function, having an organ appropriate to it. The character of this organ in both these fishes, and its largely-developed connexions with the nervous centres, have raised in some minds the suspicion that in it there takes place a transformation of what we call nerve-force into the force known as electricity. Perhaps, however, the true interpretation may rather be that by nervous stimulation there is set up in these animal-batteries that particular transformation of molecular motion which it is their function to produce.

But whether general or special, and in whatever manner produced, these evolutions of electricity are among the reactions of organic matter called forth by the actions to which it is subject. Though these re-actions are not direct, but seem to be remote consequences of changes wrought by external agencies on the organism, they are yet incidents in that general re-distribution of motion which these external agencies initiate; and as such must here be noticed.

§ 21. To these known modes of motion, has next to be added an unknown one. Heat, Light, and Electricity are emitted by inorganic matter when undergoing changes, as well as by organic matter. But there is manifested in some classes of living bodies a kind of force which we cannot identify with any of the forces manifested by bodies that are not alive, – a force which is thus unknown, in the sense that it cannot be assimilated to any otherwise-recognized class. I allude to what is called nerve-force.

1
...
...
22

Бесплатно

0 
(0 оценок)

Читать книгу: «The Principles of Biology, Volume 1 (of 2)»

Установите приложение, чтобы читать эту книгу бесплатно