The essays contained in the present volume were first published in the English periodicals – chiefly the Quarterly Reviews. They contain ideas of permanent interest, and display an amount of thought and labor evidently much greater than is usually bestowed on review articles. They were written with a view to ultimate republication in an enduring form, and were issued in London with several other papers, under the title of "Essays; Scientific, Political, and Speculative," first and second series; – the former appearing in 1857, and the latter in 1863.
The interest created in Mr. Spencer's writings by the publication in this country of his valuable work on "Education," and by criticisms of his other works, has created a demand for these discussions which can only be supplied by their republication. They are now, however, issued in a new form, and are more suited to develop the author's purpose in their preparation; for while each of these essays has its intrinsic and independent claims upon the reader's attention, they are all at the same time but parts of a connected and comprehensive argument. Nearly all of Mr. Spencer's essays have relations more or less direct to the general doctrine of Evolution – a doctrine which he has probably done more to unfold and illustrate than any other thinker. The papers comprised in the present volume are those which deal with the subject in its most obvious and prominent aspects.
Although the argument contained in the first essay on "Progress; its Law and Cause," has been published in an amplified form in the author's "First Principles," it has been thought best to prefix it to the present collection as a key to the full interpretation of the other essays.
To those who read this volume its commendation will be superfluous; we will only say that those who become interested in his course of thought will find it completely elaborated in his new System of Philosophy, now in course of publication.
The remaining articles of Mr. Spencer's first and second series will be shortly published, in a volume entitled "Essays; Moral, Political, and Æsthetic."
New York, March, 1864.
The current conception of Progress is somewhat shifting and indefinite. Sometimes it comprehends little more than simple growth – as of a nation in the number of its members and the extent of territory over which it has spread. Sometimes it has reference to quantity of material products – as when the advance of agriculture and manufactures is the topic. Sometimes the superior quality of these products is contemplated: and sometimes the new or improved appliances by which they are produced. When, again, we speak of moral or intellectual progress, we refer to the state of the individual or people exhibiting it; while, when the progress of Knowledge, of Science, of Art, is commented upon, we have in view certain abstract results of human thought and action. Not only, however, is the current conception of Progress more or less vague, but it is in great measure erroneous. It takes in not so much the reality of Progress as its accompaniments – not so much the substance as the shadow. That progress in intelligence seen during the growth of the child into the man, or the savage into the philosopher, is commonly regarded as consisting in the greater number of facts known and laws understood: whereas the actual progress consists in those internal modifications of which this increased knowledge is the expression. Social progress is supposed to consist in the produce of a greater quantity and variety of the articles required for satisfying men's wants; in the increasing security of person and property; in widening freedom of action: whereas, rightly understood, social progress consists in those changes of structure in the social organism which have entailed these consequences. The current conception is a teleological one. The phenomena are contemplated solely as bearing on human happiness. Only those changes are held to constitute progress which directly or indirectly tend to heighten human happiness. And they are thought to constitute progress simply because they tend to heighten human happiness. But rightly to understand progress, we must inquire what is the nature of these changes, considered apart from our interests. Ceasing, for example, to regard the successive geological modifications that have taken place in the Earth, as modifications that have gradually fitted it for the habitation of Man, and as therefore a geological progress, we must seek to determine the character common to these modifications – the law to which they all conform. And similarly in every other case. Leaving out of sight concomitants and beneficial consequences, let us ask what Progress is in itself.
In respect to that progress which individual organisms display in the course of their evolution, this question has been answered by the Germans. The investigations of Wolff, Goethe, and Von Baer, have established the truth that the series of changes gone through during the development of a seed into a tree, or an ovum into an animal, constitute an advance from homogeneity of structure to heterogeneity of structure. In its primary stage, every germ consists of a substance that is uniform throughout, both in texture and chemical composition. The first step is the appearance of a difference between two parts of this substance; or, as the phenomenon is called in physiological language, a differentiation. Each of these differentiated divisions presently begins itself to exhibit some contrast of parts; and by and by these secondary differentiations become as definite as the original one. This process is continuously repeated – is simultaneously going on in all parts of the growing embryo; and by endless such differentiations there is finally produced that complex combination of tissues and organs constituting the adult animal or plant. This is the history of all organisms whatever. It is settled beyond dispute that organic progress consists in a change from the homogeneous to the heterogeneous.
Now, we propose in the first place to show, that this law of organic progress is the law of all progress. Whether it be in the development of the Earth, in the development of Life upon its surface, in the development of Society, of Government, of Manufactures, of Commerce, of Language, Literature, Science, Art, this same evolution of the simple into the complex, through successive differentiations, holds throughout. From the earliest traceable cosmical changes down to the latest results of civilization, we shall find that the transformation of the homogeneous into the heterogeneous, is that in which Progress essentially consists.
With the view of showing that if the Nebular Hypothesis be true, the genesis of the solar system supplies one illustration of this law, let us assume that the matter of which the sun and planets consist was once in a diffused form; and that from the gravitation of its atoms there resulted a gradual concentration. By the hypothesis, the solar system in its nascent state existed as an indefinitely extended and nearly homogeneous medium – a medium almost homogeneous in density, in temperature, and in other physical attributes. The first advance towards consolidation resulted in a differentiation between the occupied space which the nebulous mass still filled, and the unoccupied space which it previously filled. There simultaneously resulted a contrast in density and a contrast in temperature, between the interior and the exterior of this mass. And at the same time there arose throughout it rotatory movements, whose velocities varied according to their distances from its centre. These differentiations increased in number and degree until there was evolved the organized group of sun, planets, and satellites, which we now know – a group which presents numerous contrasts of structure and action among its members. There are the immense contrasts between the sun and planets, in bulk and in weight; as well as the subordinate contrasts between one planet and another, and between the planets and their satellites. There is the similarly marked contrast between the sun as almost stationary, and the planets as moving round him with great velocity; while there are the secondary contrasts between the velocities and periods of the several planets, and between their simple revolutions and the double ones of their satellites, which have to move round their primaries while moving round the sun. There is the yet further strong contrast between the sun and the planets in respect of temperature; and there is reason to suppose that the planets and satellites differ from each other in their proper heat, as well as in the heat they receive from the sun.
When we bear in mind that, in addition to these various contrasts, the planets and satellites also differ in respect to their distances from each other and their primary; in respect to the inclinations of their orbits, the inclinations of their axes, their times of rotation on their axes, their specific gravities, and their physical constitutions; we see what a high degree of heterogeneity the solar system exhibits, when compared with the almost complete homogeneity of the nebulous mass out of which it is supposed to have originated. Passing from this hypothetical illustration, which must be taken for what it is worth, without prejudice to the general argument, let us descend to a more certain order of evidence. It is now generally agreed among geologists that the Earth was at first a mass of molten matter; and that it is still fluid and incandescent at the distance of a few miles beneath its surface. Originally, then, it was homogeneous in consistence, and, in virtue of the circulation that takes place in heated fluids, must have been comparatively homogeneous in temperature; and it must have been surrounded by an atmosphere consisting partly of the elements of air and water, and partly of those various other elements which assume a gaseous form at high temperatures. That slow cooling by radiation which is still going on at an inappreciable rate, and which, though originally far more rapid than now, necessarily required an immense time to produce any decided change, must ultimately have resulted in the solidification of the portion most able to part with its heat – namely, the surface. In the thin crust thus formed we have the first marked differentiation. A still further cooling, a consequent thickening of this crust, and an accompanying deposition of all solidifiable elements contained in the atmosphere, must finally have been followed by the condensation of the water previously existing as vapour. A second marked differentiation must thus have arisen: and as the condensation must have taken place on the coolest parts of the surface – namely, about the poles – there must thus have resulted the first geographical distinction of parts. To these illustrations of growing heterogeneity, which, though deduced from the known laws of matter, may be regarded as more or less hypothetical, Geology adds an extensive series that have been inductively established. Its investigations show that the Earth has been continually becoming more heterogeneous in virtue of the multiplication of the strata which form its crust; further, that it has been becoming more heterogeneous in respect of the composition of these strata, the latter of which, being made from the detritus of the older ones, are many of them rendered highly complex by the mixture of materials they contain; and that this heterogeneity has been vastly increased by the action of the Earth's still molten nucleus upon its envelope, whence have resulted not only a great variety of igneous rocks, but the tilting up of sedimentary strata at all angles, the formation of faults and metallic veins, the production of endless dislocations and irregularities. Yet again, geologists teach us that the Earth's surface has been growing more varied in elevation – that the most ancient mountain systems are the smallest, and the Andes and Himalayas the most modern; while in all probability there have been corresponding changes in the bed of the ocean. As a consequence of these ceaseless differentiations, we now find that no considerable portion of the Earth's exposed surface is like any other portion, either in contour, in geologic structure, or in chemical composition; and that in most parts it changes from mile to mile in all these characteristics.
Moreover, it must not be forgotten that there has been simultaneously going on a gradual differentiation of climates. As fast as the Earth cooled and its crust solidified, there arose appreciable differences in temperature between those parts of its surface most exposed to the sun and those less exposed. Gradually, as the cooling progressed, these differences became more pronounced; until there finally resulted those marked contrasts between regions of perpetual ice and snow, regions where winter and summer alternately reign for periods varying according to the latitude, and regions where summer follows summer with scarcely an appreciable variation. At the same time the successive elevations and subsidences of different portions of the Earth's crust, tending as they have done to the present irregular distribution of land and sea, have entailed various modifications of climate beyond those dependent on latitude; while a yet further series of such modifications have been produced by increasing differences of elevation in the land, which have in sundry places brought arctic, temperate, and tropical climates to within a few miles of each other. And the general result of these changes is, that not only has every extensive region its own meteorologic conditions, but that every locality in each region differs more or less from others in those conditions, as in its structure, its contour, its soil. Thus, between our existing Earth, the phenomena of whose varied crust neither geographers, geologists, mineralogists, nor meteorologists have yet enumerated, and the molten globe out of which it was evolved, the contrast in heterogeneity is sufficiently striking.
When from the Earth itself we turn to the plants and animals that have lived, or still live, upon its surface, we find ourselves in some difficulty from lack of facts. That every existing organism has been developed out of the simple into the complex, is indeed the first established truth of all; and that every organism that has existed was similarly developed, is an inference which no physiologist will hesitate to draw. But when we pass from individual forms of life to Life in general, and inquire whether the same law is seen in the ensemble of its manifestations, – whether modern plants and animals are of more heterogeneous structure than ancient ones, and whether the Earth's present Flora and Fauna are more heterogeneous than the Flora and Fauna of the past, – we find the evidence so fragmentary, that every conclusion is open to dispute. Two-thirds of the Earth's surface being covered by water; a great part of the exposed land being inaccessible to, or untravelled by, the geologist; the greater part of the remainder having been scarcely more than glanced at; and even the most familiar portions, as England, having been so imperfectly explored that a new series of strata has been added within these four years, – it is manifestly impossible for us to say with any certainty what creatures have, and what have not, existed at any particular period. Considering the perishable nature of many of the lower organic forms, the metamorphosis of many sedimentary strata, and the gaps that occur among the rest, we shall see further reason for distrusting our deductions. On the one hand, the repeated discovery of vertebrate remains in strata previously supposed to contain none, – of reptiles where only fish were thought to exist, – of mammals where it was believed there were no creatures higher than reptiles, – renders it daily more manifest how small is the value of negative evidence.
On the other hand, the worthlessness of the assumption that we have discovered the earliest, or anything like the earliest, organic remains, is becoming equally clear. That the oldest known sedimentary rocks have been greatly changed by igneous action, and that still older ones have been totally transformed by it, is becoming undeniable. And the fact that sedimentary strata earlier than any we know, have been melted up, being admitted, it must also be admitted that we cannot say how far back in time this destruction of sedimentary strata has been going on. Thus it is manifest that the title, Palæozoic, as applied to the earliest known fossiliferous strata, involves a petitio principii; and that, for aught we know to the contrary, only the last few chapters of the Earth's biological history may have come down to us. On neither side, therefore, is the evidence conclusive. Nevertheless we cannot but think that, scanty as they are, the facts, taken altogether, tend to show both that the more heterogeneous organisms have been evolved in the later geologic periods, and that Life in general has been more heterogeneously manifested as time has advanced. Let us cite, in illustration, the one case of the vertebrata. The earliest known vertebrate remains are those of Fishes; and Fishes are the most homogeneous of the vertebrata. Later and more heterogeneous are Reptiles. Later still, and more heterogeneous still, are Mammals and Birds. If it be said, as it may fairly be said, that the Palæozoic deposits, not being estuary deposits, are not likely to contain the remains of terrestrial vertebrata, which may nevertheless have existed at that era, we reply that we are merely pointing to the leading facts, such as they are.
But to avoid any such criticism, let us take the mammalian subdivision only. The earliest known remains of mammals are those of small marsupials, which are the lowest of the mammalian type; while, conversely, the highest of the mammalian type – Man – is the most recent. The evidence that the vertebrate fauna, as a whole, has become more heterogeneous, is considerably stronger. To the argument that the vertebrate fauna of the Palæozoic period, consisting, so far as we know, entirely of Fishes, was less heterogeneous than the modern vertebrate fauna, which includes Reptiles, Birds, and Mammals, of multitudinous genera, it may be replied, as before, that estuary deposits of the Palæozoic period, could we find them, might contain other orders of vertebrata. But no such reply can be made to the argument that whereas the marine vertebrata of the Palæozoic period consisted entirely of cartilaginous fishes, the marine vertebrata of later periods include numerous genera of osseous fishes; and that, therefore, the later marine vertebrate faunas are more heterogeneous than the oldest known one. Nor, again, can any such reply be made to the fact that there are far more numerous orders and genera of mammalian remains in the tertiary formations than in the secondary formations. Did we wish merely to make out the best case, we might dwell upon the opinion of Dr. Carpenter, who says that "the general facts of Palæontology appear to sanction the belief, that the same plan may be traced out in what may be called the general life of the globe, as in the individual life
Бесплатно
Установите приложение, чтобы читать эту книгу бесплатно
О проекте
О подписке