Читать бесплатно книгу «Volcanic Islands» Чарльза Дарвина полностью онлайн — MyBook

CHAPTER I. – ST. JAGO, IN THE CAPE DE VERDE ARCHIPELAGO

Rocks of the lowest series.

A calcareous sedimentary deposit, with recent shells, altered by the contact of superincumbent lava, its horizontality and extent.

Subsequent volcanic eruptions, associated with calcareous matter in an earthy and fibrous form, and often enclosed within the separate cells of the scoriae.

Ancient and obliterated orifices of eruption of small size.

Difficulty of tracing over a bare plain recent streams of lava.

Inland hills of more ancient volcanic rock.

Decomposed olivine in large masses.

Feldspathic rocks beneath the upper crystalline basaltic strata.

Uniform structure and form of the more ancient volcanic hills.

Form of the valleys near the coast.

Conglomerate now forming on the sea beach.

(FIGURE 1: MAP 1: PART OF ST. JAGO, ONE OF THE CAPE DE VERDE ISLANDS.)

The island of St. Jago extends in a N.N.W. and S.S.E. direction, thirty miles in length by about twelve in breadth. My observations, made during two visits, were confined to the southern portion within the distance of a few leagues from Porto Praya. The country, viewed from the sea, presents a varied outline: smooth conical hills of a reddish colour (like Red Hill in Figure 1 (Map 1). (The outline of the coast, the position of the villages, streamlets, and of most of the hills in this woodcut, are copied from the chart made on board H.M.S. "Leven." The square-topped hills (A, B, C, etc.) are put in merely by eye, to illustrate my description.)), and others less regular, flat-topped, and of a blackish colour (like A, B, C,) rise from successive, step-formed plains of lava. At a distance, a chain of mountains, many thousand feet in height, traverses the interior of the island. There is no active volcano in St. Jago, and only one in the group, namely at Fogo. The island since being inhabited has not suffered from destructive earthquakes.

The lowest rocks exposed on the coast near Porto Praya, are highly crystalline and compact; they appear to be of ancient, submarine, volcanic origin; they are unconformably covered by a thin, irregular, calcareous deposit, abounding with shells of a late tertiary period; and this again is capped by a wide sheet of basaltic lava, which has flowed in successive streams from the interior of the island, between the square-topped hills marked A, B, C, etc. Still more recent streams of lava have been erupted from the scattered cones, such as Red and Signal Post Hills. The upper strata of the square-topped hills are intimately related in mineralogical composition, and in other respects, with the lowest series of the coast- rocks, with which they seem to be continuous.

MINERALOGICAL DESCRIPTION OF THE ROCKS OF THE LOWEST SERIES.

These rocks possess an extremely varying character; they consist of black, brown, and grey, compact, basaltic bases, with numerous crystals of augite, hornblende, olivine, mica, and sometimes glassy feldspar. A common variety is almost entirely composed of crystals of augite with olivine. Mica, it is known, seldom occurs where augite abounds; nor probably does the present case offer a real exception, for the mica (at least in my best characterised specimen, in which one nodule of this mineral is nearly half an inch in length) is as perfectly rounded as a pebble in a conglomerate, and evidently has not been crystallised in the base, in which it is now enclosed, but has proceeded from the fusion of some pre-existing rock. These compact lavas alternate with tuffs, amygdaloids, and wacke, and in some places with coarse conglomerate. Some of the argillaceous wackes are of a dark green colour, others, pale yellowish-green, and others nearly white; I was surprised to find that some of the latter varieties, even where whitest, fused into a jet black enamel, whilst some of the green varieties afforded only a pale gray bead. Numerous dikes, consisting chiefly of highly compact augitic rocks, and of gray amygdaloidal varieties, intersect the strata, which have in several places been dislocated with considerable violence, and thrown into highly inclined positions. One line of disturbance crosses the northern end of Quail Island (an islet in the Bay of Porto Praya), and can be followed to the mainland. These disturbances took place before the deposition of the recent sedimentary bed; and the surface, also, had previously been denuded to a great extent, as is shown by many truncated dikes.

DESCRIPTION OF THE CALCAREOUS DEPOSIT OVERLYING THE FOREGOING VOLCANIC ROCKS.

This stratum is very conspicuous from its white colour, and from the extreme regularity with which it ranges in a horizontal line for some miles along the coast. Its average height above the sea, measured from the upper line of junction with the superincumbent basaltic lava, is about sixty feet; and its thickness, although varying much from the inequalities of the underlying formation, may be estimated at about twenty feet. It consists of quite white calcareous matter, partly composed of organic debris, and partly of a substance which may be aptly compared in appearance with mortar. Fragments of rock and pebbles are scattered throughout this bed, often forming, especially in the lower part, a conglomerate. Many of the fragments of rock are whitewashed with a thin coating of calcareous matter. At Quail Island, the calcareous deposit is replaced in its lowest part by a soft, brown, earthy tuff, full of Turritellae; this is covered by a bed of pebbles, passing into sandstone, and mixed with fragments of echini, claws of crabs, and shells; the oyster-shells still adhering to the rock on which they grew. Numerous white balls appearing like pisolitic concretions, from the size of a walnut to that of an apple, are embedded in this deposit; they usually have a small pebble in their centres. Although so like concretions, a close examination convinced me that they were Nulliporae, retaining their proper forms, but with their surfaces slightly abraded: these bodies (plants as they are now generally considered to be) exhibit under a microscope of ordinary power, no traces of organisation in their internal structure. Mr. George R. Sowerby has been so good as to examine the shells which I collected: there are fourteen species in a sufficiently perfect condition for their characters to be made out with some degree of certainty, and four which can be referred only to their genera. Of the fourteen shells, of which a list is given in the Appendix, eleven are recent species; one, though undescribed, is perhaps identical with a species which I found living in the harbour of Porto Praya; the two remaining species are unknown, and have been described by Mr. Sowerby. Until the shells of this Archipelago and of the neighbouring coasts are better known, it would be rash to assert that even these two latter shells are extinct. The number of species which certainly belong to existing kinds, although few in number, are sufficient to show that the deposit belongs to a late tertiary period. From its mineralogical character, from the number and size of the embedded fragments, and from the abundance of Patellae, and other littoral shells, it is evident that the whole was accumulated in a shallow sea, near an ancient coast-line.

EFFECTS PRODUCED BY THE FLOWING OF THE SUPERINCUMBENT BASALTIC LAVA OVER THE CALCAREOUS DEPOSIT.

These effects are very curious. The calcareous matter is altered to the depth of about a foot beneath the line of junction; and a most perfect gradation can be traced, from loosely aggregated, small, particles of shells, corallines, and Nulliporae, into a rock, in which not a trace of mechanical origin can be discovered, even with a microscope. Where the metamorphic change has been greatest, two varieties occur. The first is a hard, compact, white, fine-grained rock, striped with a few parallel lines of black volcanic particles, and resembling a sandstone, but which, upon close examination, is seen to be crystallised throughout, with the cleavages so perfect that they can be readily measured by the reflecting goniometer. In specimens, where the change has been less complete, when moistened and examined under a strong lens, the most interesting gradation can be traced, some of the rounded particles retaining their proper forms, and others insensibly melting into the granulo-crystalline paste. The weathered surface of this stone, as is so frequently the case with ordinary limestones, assumes a brick-red colour.

The second metamorphosed variety is likewise a hard rock, but without any crystalline structure. It consists of a white, opaque, compact, calcareous stone, thickly mottled with rounded, though regular, spots of a soft, earthy, ochraceous substance. This earthy matter is of a pale yellowish- brown colour, and appears to be a mixture of carbonate of lime with iron; it effervesces with acids, is infusible, but blackens under the blowpipe, and becomes magnetic. The rounded form of the minute patches of earthy substance, and the steps in the progress of their perfect formation, which can be followed in a suit of specimens, clearly show that they are due either to some power of aggregation in the earthy particles amongst themselves, or more probably to a strong attraction between the atoms of the carbonate of line, and consequently to the segregation of the earthy extraneous matter. I was much interested by this fact, because I have often seen quartz rocks (for instance, in the Falkland Islands, and in the lower Silurian strata of the Stiper-stones in Shropshire), mottled in a precisely analogous manner, with little spots of a white, earthy substance (earthy feldspar?); and these rocks, there was good reason to suppose, had undergone the action of heat, – a view which thus receives confirmation. This spotted structure may possibly afford some indication in distinguishing those formations of quartz, which owe their present structure to igneous action, from those produced by the agency of water alone; a source of doubt, which I should think from my own experience, that most geologists, when examining arenaceo-quartzose districts must have experienced.

The lowest and most scoriaceous part of the lava, in rolling over the sedimentary deposit at the bottom of the sea, has caught up large quantities of calcareous matter, which now forms a snow-white, highly crystalline basis to a breccia, including small pieces of black, glossy scoriae. A little above this, where the lime is less abundant, and the lava more compact, numerous little balls, composed of spicula of calcareous spar, radiating from common centres, occupy the interstices. In one part of Quail Island, the lime has thus been crystallised by the heat of the superincumbent lava, where it is only thirteen feet in thickness; nor had the lava been originally thicker, and since reduced by degradation, as could be told from the degree of cellularity of its surface. I have already observed that the sea must have been shallow in which the calcareous deposit was accumulated. In this case, therefore, the carbonic acid gas has been retained under a pressure, insignificant compared with that (a column of water, 1,708 feet in height) originally supposed by Sir James Hall to be requisite for this end: but since his experiments, it has been discovered that pressure has less to do with the retention of carbonic acid gas, than the nature of the circumjacent atmosphere; and hence, as is stated to be the case by Mr. Faraday, masses of limestone are sometimes fused and crystallised even in common limekilns. (I am much indebted to Mr. E.W. Brayley in having given me the following references to papers on this subject: Faraday in the "Edinburgh New Philosophical Journal" volume 15 page 398; Gay-Lussac in "Annales de Chem. et Phys." tome 63 page 219 translated in the "London and Edinburgh Philosophical Magazine" volume 10 page 496.) Carbonate of lime can be heated to almost any degree, according to Faraday, in an atmosphere of carbonic acid gas, without being decomposed; and Gay-Lussac found that fragments of limestone, placed in a tube and heated to a degree, not sufficient by itself to cause their decomposition, yet immediately evolved their carbonic acid, when a stream of common air or steam was passed over them: Gay-Lussac attributes this to the mechanical displacement of the nascent carbonic acid gas. The calcareous matter beneath the lava, and especially that forming the crystalline spicula between the interstices of the scoriae, although heated in an atmosphere probably composed chiefly of steam, could not have been subjected to the effects of a passing stream; and hence it is, perhaps, that they have retained their carbonic acid, under a small amount of pressure.

The fragments of scoriae, embedded in the crystalline calcareous basis, are of a jet black colour, with a glossy fracture like pitchstone. Their surfaces, however, are coated with a layer of a reddish-orange, translucent substance, which can easily be scratched with a knife; hence they appear as if overlaid by a thin layer of rosin. Some of the smaller fragments are partially changed throughout into this substance: a change which appears quite different from ordinary decomposition. At the Galapagos Archipelago (as will be described in a future chapter), great beds are formed of volcanic ashes and particles of scoriae, which have undergone a closely similar change.

THE EXTENT AND HORIZONTALITY OF THE CALCAREOUS STRATUM.

(FIGURE 2: SIGNAL POST HILL. (Section with A low and C high.)

A. – Ancient volcanic rocks.

B. – Calcareous stratum.

C. – Upper basaltic lava.)

Бесплатно

0 
(0 оценок)

Читать книгу: «Volcanic Islands»

Установите приложение, чтобы читать эту книгу бесплатно