Читать бесплатно книгу «The Variation of Animals and Plants under Domestication — Volume 2» Чарльза Дарвина полностью онлайн — MyBook

The law of prepotency comes into action when species are crossed, as with races and individuals. Gartner has unequivocally shown (14/15. 'Bastarderzeugung' s. 256, 290, etc. Naudin 'Nouvelles Archives du Museum' tome 1 page 149 gives a striking instance of prepotency in Datura stramonium when crossed with two other species.) that this is the case with plants. To give one instance: when Nicotiana paniculata and vincaeflora are crossed, the character of N. paniculata is almost completely lost in the hybrid; but if N. quadrivalvis be crossed with N. vincaeflora, this latter species, which was before so prepotent, now in its turn almost disappears under the power of N. quadrivalvis. It is remarkable that the prepotency of one species over another in transmission is quite independent, as shown by Gartner, of the greater or less facility with which the one fertilises the other.

With animals, the jackal is prepotent over the dog, as is stated by Flourens, who made many crosses between these animals; and this was likewise the case with a hybrid which I once saw between a jackal and a terrier. I cannot doubt, from the observations of Colin and others, that the ass is prepotent over the horse; the prepotency in this instance running more strongly through the male than through the female ass; so that the mule resembles the ass more closely than does the hinny. (14/16. Flourens 'Longevite Humaine' page 144 on crossed jackals. With respect to the difference between the mule and the hinny I am aware that this has generally been attributed to the sire and dam transmitting their characters differently; but Colin, who has given in his 'Traite Phys. Comp.' tome 2 pages 537-539, the fullest description which I have met with of these reciprocal hybrids, is strongly of opinion that the ass preponderates in both crosses, but in an unequal degree. This is likewise the conclusion of Flourens, and of Bechstein in his 'Naturgeschichte Deutschlands' b. 1 s. 294. The tail of the hinny is much more like that of the horse than is the tail of the mule, and this is generally accounted for by the males of both species transmitting with greater power this part of their structure; but a compound hybrid which I saw in the Zoological Gardens, from a mare by a hybrid ass- zebra, closely resembled its mother in its tail.) The male pheasant, judging from Mr. Hewitt's descriptions (14/17. Mr. Hewitt who has had such great experience in raising these hybrids says ('Poultry Book' by Mr. Tegetmeier 1866 pages 165-167) that in all, the head was destitute of wattles, comb, and ear-lappets; and all closely resembled the pheasant in the shape of the tail and general contour of the body. These hybrids were raised from hens of several breeds by a cock-pheasant; but another hybrid, described by Mr. Hewitt, was raised from a hen-pheasant, by a silver-laced Bantam cock, and this possessed a rudimental comb and wattles.), and from the hybrids which I have seen, preponderates over the domestic fowl; but the latter, as far as colour is concerned, has considerable power of transmission, for hybrids raised from five differently coloured hens differed greatly in plumage. I formerly examined some curious hybrids in the Zoological Gardens, between the Penguin variety of the common duck and the Egyptian goose (Anser aegyptiacus); and although I will not assert that the domesticated variety preponderated over the natural species, yet it had strongly impressed its unnatural upright figure on these hybrids.

I am aware that such cases as the foregoing have been ascribed by various authors, not to one species, race, or individual being prepotent over the other in impressing its character on its crossed offspring, but to such rules as that the father influences the external characters and the mother the internal or vital organs. But the great diversity of the rules given by various authors almost proves their falseness. Dr. Prosper Lucas has fully discussed this point, and has shown (14/18. 'L'Hered. Nat.' tome 2 book 2 chapter 1.) that none of the rules (and I could add others to those quoted by him) apply to all animals. Similar rules have been announced for plants, and have been proved by Gartner (14/19. 'Bastarderzeugung' s. 264-266. Naudin 'Nouvelles Archives du Museum' tome 1 page 148 has arrived at a similar conclusion.) to be all erroneous. If we confine our view to the domesticated races of a single species, or perhaps even to the species of the same genus, some such rules may hold good; for instance, it seems that in reciprocally crossing various breeds of fowls the male generally gives colour (14/20. 'Cottage Gardener' 1856 pages 101, 137.); but conspicuous exceptions have passed under my own eyes. It seems that the ram usually gives its peculiar horns and fleece to its crossed offspring, and the bull the presence or absence of horns.

In the following chapter on Crossing I shall have occasion to show that certain characters are rarely or never blended by crossing, but are transmitted in an unmodified state from either parent-form; I refer to this fact here because it is sometimes accompanied on the one side by prepotency, which thus acquires the false appearance of unusual strength. In the same chapter I shall show that the rate at which a species or breed absorbs and obliterates another by repeated crosses, depends in chief part on prepotency in transmission.]

In conclusion, some of the cases above given, — for instance, that of the trumpeter pigeon, — prove that there is a wide difference between mere inheritance and prepotency. This latter power seems to us, in our ignorance, to act in most cases quite capriciously. The very same character, even though it be an abnormal or monstrous one, such as silky feathers, may be transmitted by different species, when crossed, either with prepotent force or singular feebleness. It is obvious, that a purely-bred form of either sex, in all cases in which prepotency does not run more strongly in one sex than the other, will transmit its character with prepotent force over a mongrelised and already variable form. (14/21. See some remarks on this head with respect to sheep by Mr. Wilson in 'Gardener's Chronicle' 1863 page 15. Many striking instances of this result are given by M. Malingie-Nouel 'Journ. R. Agricult. Soc.' volume 14 1853 page 220 with respect to crosses between English and French sheep. He found that he obtained the desired influence of the English breeds by crossing intentionally mongrelised French breeds with pure English breeds.) From several of the above-given cases we may conclude that mere antiquity of character does not by any means necessarily make it prepotent. In some cases prepotency apparently depends on the same character being present and visible in one of the two breeds which are crossed, and latent or invisible in the other breed; and in this case it is natural that the character which is potentially present in both breeds should be prepotent. Thus, we have reason to believe that there is a latent tendency in all horses to be dun-coloured and striped; and when a horse of this kind is crossed with one of any other colour, it is said that the offspring are almost sure to be striped. Sheep have a similar latent tendency to become dark-coloured, and we have seen with what prepotent force a ram with a few black spots, when crossed with white sheep of various breeds, coloured its offspring. All pigeons have a latent tendency to become slaty-blue, with certain characteristic marks, and it is known that, when a bird thus coloured is crossed with one of any other colour, it is most difficult afterwards to eradicate the blue tint. A nearly parallel case is offered by those black bantams which, as they grow old, develop a latent tendency to acquire red feathers. But there are exceptions to the rule: hornless breeds of cattle possess a latent capacity to reproduce horns, yet when crossed with horned breeds they do not invariably produce offspring bearing horns.

We meet with analogous cases with plants. Striped flowers, though they can be propagated truly by seed, have a latent tendency to become uniformly coloured, but when once crossed by a uniformly coloured variety, they ever afterwards fail to produce striped seedlings. (14/22. Verlot 'Des Varietes' 1865 page 66.) Another case is in some respects more curious: plants bearing peloric flowers have so strong a latent tendency to reproduce their normally irregular flowers, that this often occurs by buds when a plant is transplanted into poorer or richer soil. (14/23. Moquin-Tandon 'Teratologie' page 191.) Now I crossed the peloric snapdragon (Antirrhinum majus), described in the last chapter, with pollen of the common form; and the latter, reciprocally, with peloric pollen. I thus raised two great beds of seedlings, and not one was peloric. Naudin (14/24. 'Nouvelles Archives du Museum' tome 1 page 137.) obtained the same result from crossing a peloric Linaria with the common form. I carefully examined the flowers of ninety plants of the crossed Antirrhinum in the two beds, and their structure had not been in the least affected by the cross, except that in a few instances the minute rudiment of the fifth stamen, which is always present, was more fully or even completely developed. It must not be supposed that this entire obliteration of the peloric structure in the crossed plants can be accounted for by any incapacity of transmission; for I raised a large bed of plants from the peloric Antirrhinum, artificially fertilised by its own pollen, and sixteen plants, which alone survived the winter, were all as perfectly peloric as the parent-plant. Here we have a good instance of the wide difference between the inheritance of a character and the power of transmitting it to crossed offspring. The crossed plants, which perfectly resembled the common snapdragon, were allowed to sow themselves, and out of a hundred and twenty-seven seedlings, eighty-eight proved to be common snapdragons, two were in an intermediate condition between the peloric and normal state, and thirty-seven were perfectly peloric, having reverted to the structure of their one grand-parent. This case seems at first sight to offer an exception to the rule just given, namely, that a character which is present in one form and latent in the other is generally transmitted with prepotent force when the two forms are crossed. For in all the Scrophulariaceae, and especially in the genera Antirrhinum and Linaria, there is, as was shown in the last chapter, a strong latent tendency to become peloric; but there is also, as we have seen, a still stronger tendency in all peloric plants to reacquire their normal irregular structure. So that we have two opposed latent tendencies in the same plants. Now, with the crossed Antirrhinums the tendency to produce normal or irregular flowers, like those of the common Snapdragon, prevailed in the first generation; whilst the tendency to pelorism, appearing to gain strength by the intermission of a generation, prevailed to a large extent in the second set of seedlings. How it is possible for a character to gain strength by the intermission of a generation, will be considered in the chapter on pangenesis.

On the whole, the subject of prepotency is extremely intricate, — from its varying so much in strength, even in regard to the same character, in different animals, — from its running either equally in both sexes, or, as frequently is the case with animals, but not with plants, much stronger in one sex than the other, — from the existence of secondary sexual characters, — from the transmission of certain characters being limited, as we shall immediately see, by sex, — from certain characters not blending together, — and, perhaps, occasionally from the effects of a previous fertilisation on the mother. It is therefore not surprising that no one has hitherto succeeded in drawing up general rules on the subject of prepotency.

INHERITANCE AS LIMITED BY SEX.

New characters often appear in one sex, and are afterwards transmitted to the same sex, either exclusively or in a much greater degree than to the other. This subject is important, because with animals of many kinds in a state of nature, both high and low in the scale, secondary sexual characters, not directly connected with the organs of reproduction, are conspicuously present. With our domesticated animals, characters of this kind often differ widely from those distinguishing the two sexes of the parent species; and the principle of inheritance, as limited by sex, explains how this is possible.

[Dr. P. Lucas has shown (14/25. 'L'Hered. Nat.' tome 2 pages 137-165. See also Mr. Sedgwick's four memoirs, immediately to be referred to.) that when a peculiarity, in no manner connected with the reproductive organs, appears in either parent, it is often transmitted exclusively to the offspring of the same sex, or to a much greater number of them than of the opposite sex. Thus, in the family of Lambert, the horn-like projections on the skin were transmitted from the father to his sons and grandsons alone; so it has been with other cases of ichthyosis, with supernumerary digits, with a deficiency of digits and phalanges, and in a lesser degree with various diseases, especially with colour-blindness and the haemorrhagic diathesis, that is, an extreme liability to profuse and uncontrollable bleeding from trifling wounds. On the other hand, mothers have transmitted, during several generations, to their daughters alone, supernumerary and deficient digits, colour-blindness and other peculiarities. So that the very same peculiarity may become attached to either sex, and be long inherited by that sex alone; but the attachment in certain cases is much more frequent to one than the other sex. The same peculiarities also may be promiscuously transmitted to either sex. Dr. Lucas gives other cases, showing that the male occasionally transmits his peculiarities to his daughters alone, and the mother to her sons alone; but even in this case we see that inheritance is to a certain extent, though inversely, regulated by sex. Dr. Lucas, after weighing the whole evidence, comes to the conclusion that every peculiarity tends to be transmitted in a greater or lesser degree to that sex in which it first appears. But a more definite rule, as I have elsewhere shown (14/26. 'Descent of Man' 2nd edition page 32.) generally holds good, namely, that variations which first appear in either sex at a late period of life, when the reproductive functions are active, tend to be developed in that sex alone; whilst variations which first appear early in life in either sex are commonly transmitted to both sexes. I am, however, far from supposing that this is the sole determining cause.

1
...
...
14

Бесплатно

0 
(0 оценок)

Читать книгу: «The Variation of Animals and Plants under Domestication — Volume 2»

Установите приложение, чтобы читать эту книгу бесплатно