Читать бесплатно книгу «Insectivorous Plants» Чарльза Дарвина полностью онлайн — MyBook

Experiment 2. – A cube of 1/10 of an inch (i.e. with each side 1/10 of an inch, or 2.54 mm. in length) was placed on a leaf, and after 50 hrs. it was converted into a sphere about 3/40 of an inch (1.905 mm.) in diameter, surrounded by perfectly transparent fluid. After ten days the leaf re-expanded, but there was still left on the disc a minute bit of albumen now rendered transparent. More albumen had been given to this leaf than could be dissolved or digested.

Experiment 3. – Two cubes of albumen of 1/20 of an inch (1.27 mm.) were placed on two leaves. After 46 hrs. every atom of one was dissolved, and most of the liquefied matter was absorbed, the fluid which remained being in this, as in all other cases, very acid and viscid. The other cube was acted on at a rather slower rate.

Experiment 4. – Two cubes of albumen of the same size as the last were placed on two leaves, and were converted in 50 hrs. into two large drops of transparent fluid; but when these were removed from beneath the inflected tentacles, and viewed by reflected light under the microscope, fine streaks of white opaque matter could be seen in the one, and traces of similar streaks in the other. The drops were replaced on the leaves, which re-expanded after 10 days; and now nothing was left except a very little transparent acid fluid.

Experiment 5. – This experiment was slightly varied, so that the albumen might be more quickly exposed to the action of the secretion. Two cubes, each of about 1/40 of an inch (.635 mm.), were placed on the same leaf, and two similar cubes on another leaf. These were examined after 21 hrs. 30 m., and all four were found rounded. After 46 hrs. the two cubes on the one leaf were completely liquefied, the fluid being perfectly transparent; on the other leaf some opaque white streaks could still be seen in the midst of the fluid. After 72 hrs. these streaks disappeared, but there was still a little viscid fluid left on the disc; whereas it was almost all absorbed on the first leaf. Both leaves were now beginning to re-expand.]

The best and almost sole test of the presence of some ferment analogous to pepsin in the secretion appeared to be to neutralise the acid of the secretion with an alkali, and to observe whether the process of digestion ceased; and then to add a little acid and observe whether the process recommenced. This was done, and, as we shall see, with success, but it was necessary first to try two control experiments; namely, whether the addition of minute drops of water of the same size as those of the dissolved alkalies to be used would stop the process of digestion; and, secondly, whether minute drops of weak hydrochloric acid, of the same strength and size as those to be used, would injure the leaves. The two following experiments were therefore tried: —

Experiment 6. – Small cubes of albumen were put on three leaves, and minute drops of distilled water on the head of a pin were added two or three times daily. These did not in the least delay the process; for, after 48 hrs., the cubes were completely dissolved on all three leaves. On the third day the leaves began to re-expand, and on the fourth day all the fluid was absorbed.

Experiment 7. – Small cubes of albumen were put on two leaves, and minute drops of hydrochloric acid, of the strength of one part to 437 of water, were added two or three times. This did not in the least delay, but seemed rather to hasten, the process of digestion; for every trace of the albumen disappeared in 24 hrs. 30 m. After three days the leaves partially re-expanded, and by this time almost all the viscid fluid on their discs was absorbed. It is almost superfluous to state that cubes of albumen of the same size as those above used, left for seven days in a little hydrochloric acid of the above strength, retained all their angles as perfect as ever.

Experiment 8. – Cubes of albumen (of 1/20 of an inch, or 2.54 mm.) were placed on five leaves, and minute drops of a solution of one part of carbonate of soda to 437 of water were added at intervals to three of them, and drops of carbonate of potash of the same strength to the other two. The drops were given on the head of a rather large pin, and I ascertained that each was equal to about 1/10 of a minim (.0059 ml.), so that each contained only 1/4800 of a grain (.0135 mg.) of the alkali. This was not sufficient, for after 46 hrs. all five cubes were dissolved.

Experiment 9. – The last experiment was repeated on four leaves, with this difference, that drops of the same solution of carbonate of soda were added rather oftener, as often as the secretion became acid, so that it was much more effectually neutralised. And now after 24 hrs. the angles of three of the cubes were not in the least rounded, those of the fourth being so in a very slight degree. Drops of extremely weak hydrochloric acid (viz. one part to 847 of water) were then added, just enough to neutralise the alkali which was still present; and now digestion immediately recommenced, so that after 23 hrs. 30 m. three of the cubes were completely dissolved, whilst the fourth was converted into a minute sphere, surrounded by transparent fluid; and this sphere next day disappeared.

Experiment 10. – Stronger solutions of carbonate of soda and of potash were next used, viz. one part to 109 of water; and as the same-sized drops were given as before, each drop contained 1/1200 of a grain (.0539 mg.) of either salt. Two cubes of albumen (each about 1/40 of an inch, or .635 mm.) were placed on the same leaf, and two on another. Each leaf received, as soon as the secretion became slightly acid (and this occurred four times within 24 hrs.), drops either of the soda or potash, and the acid was thus effectually neutralised. The experiment now succeeded perfectly, for after 22 hrs. the angles of the cubes were as sharp as they were at first, and we know from experiment 5 that such small cubes would have been completely rounded within this time by the secretion in its natural state. Some of the fluid was now removed with blotting-paper from the discs of the leaves, and minute drops of hydrochloric acid of the strength of the one part to 200 of water was added. Acid of this greater strength was used as the solutions of the alkalies were stronger. The process of digestion now commenced, so that within 48 hrs. from the time when the acid was given the four cubes were not only completely dissolved, but much of the liquefied albumen was absorbed.

Experiment 11. – Two cubes of albumen (1/40 of an inch, or .635 mm.) were placed on two leaves, and were treated with alkalies as in the last experiment, and with the same result; for after 22 hrs. they had their angles perfectly sharp, showing that the digestive process had been completely arrested. I then wished to ascertain what would be the effect of using stronger hydrochloric acid; so I added minute drops of the strength of 1 per cent. This proved rather too strong, for after 48 hrs. from the time when the acid was added one cube was still almost perfect, and the other only very slightly rounded, and both were stained slightly pink. This latter fact shows that the leaves were injured,20 for during the normal process of digestion the albumen is not thus coloured, and we can thus understand why the cubes were not dissolved.]

From these experiments we clearly see that the secretion has the power of dissolving albumen, and we further see that if an alkali is added, the process of digestion is stopped, but immediately recommences as soon as the alkali is neutralised by weak hydrochloric acid. Even if I had tried no other experiments than these, they would have almost sufficed to prove that the glands of Drosera secrete some ferment analogous to pepsin, which in presence of an acid gives to the secretion its power of dissolving albuminous compounds.

Splinters of clean glass were scattered on a large number of leaves, and these became moderately inflected. They were cut off and divided into three lots; two of them, after being left for some time in a little distilled water, were strained, and some discoloured, viscid, slightly acid fluid was thus obtained. The third lot was well soaked in a few drops of glycerine, which is well known to dissolve pepsin. Cubes of albumen (1/20 of an inch) were now placed in the three fluids in watch-glasses, some of which were kept for several days at about 90o Fahr. (32o.2 Cent.), and others at the temperature of my room; but none of the cubes were dissolved, the angles remaining as sharp as ever. This fact probably indicates that the ferment is not secreted until the glands are excited by the absorption of a minute quantity of already soluble animal matter, – a conclusion which is supported by what we shall hereafter see with respect to Dionaea. Dr. Hooker likewise found that, although the fluid within the pitchers of Nepenthes possesses extraordinary power of digestion, yet when removed from the pitchers before they have been excited and placed in a vessel, it has no such power, although it is already acid; and we can account for this fact only on the supposition that the proper ferment is not secreted until some exciting matter is absorbed.

On three other occasions eight leaves were strongly excited with albumen moistened with saliva; they were then cut off, and allowed to soak for several hours or for a whole day in a few drops of glycerine. Some of this extract was added to a little hydrochloric acid of various strengths (generally one to 400 of water), and minute cubes of albumen were placed in the mixture.21 In two of these trials the cubes were not in the least acted on; but in the third the experiment was successful. For in a vessel containing two cubes, both were reduced in size in 3 hrs.; and after 24 hrs. mere streaks of undissolved albumen were left. In a second vessel, containing two minute ragged bits of albumen, both were likewise reduced in size in 3 hrs., and after 24 hrs. completely disappeared. I then added a little weak hydrochloric acid to both vessels, and placed fresh cubes of albumen in them; but these were not acted on. This latter fact is intelligible according to the high authority of Schiff,22 who has demonstrated, as he believes, in opposition to the view held by some physiologists, that a certain small amount of pepsin is destroyed during the act of digestion. So that if my solution contained, as is probable, an extremely small amount of the ferment, this would have been consumed by the dissolution of the cubes of albumen first given; none being left when the hydrochloric acid was added. The destruction of the ferment during the process of digestion, or its absorption after the albumen had been converted into a peptone, will also account for only one out of the three latter sets of experiments having been successful.

Digestion of Roast Meat. – Cubes of about 1/20 of an inch (1.27 mm.) of moderately roasted meat were placed on five leaves which became in 12 hrs. closely inflected. After 48 hrs. I gently opened one leaf, and the meat now consisted of a minute central sphere, partially digested and surrounded by a thick envelope of transparent viscid fluid. The whole, without being much disturbed, was removed and placed under the microscope. In the central part the transverse striae on the muscular fibres were quite distinct; and it was interesting to observe how gradually they disappeared, when the same fibre was traced into the surrounding fluid. They disappeared by the striae being replaced by transverse lines formed of excessively minute dark points, which towards the exterior could be seen only under a very high power; and ultimately these points were lost. When I made these observations, I had not read Schiff's account23 of the digestion of meat by gastric juice, and I did not understand the meaning of the dark points. But this is explained in the following statement, and we further see how closely similar is the process of digestion by gastric juice and by the secretion of Drosera.

["On a dit le suc gastrique faisait perdre la fibre musculaire ses stries transversales. Ainsi nonce, cette proposition pourrait donner lieu une quivoque, car ce qui se perd, ce n'est que l'aspect extrieur de la striature et non les lments anatomiques qui la composent. On sait que les stries qui donnent un aspect si caractristique la fibre musculaire, sont le rsultat de la juxtaposition et du paralllisme des corpuscules lmentaires, placs, distances gales, dans l'intrieur des fibrilles contigus. Or, ds que le tissu connectif qui relie entre elles les fibrilles lmentaires vient se gonfler et se dissoudre, et que les fibrilles elles-mmes se dissocient, ce paralllisme est dtruit et avec lui l'aspect, le phnomne optique des stries. Si, aprs la dsagrgation des fibres, on examine au microscope les fibrilles lmentaires, on distingue encore trs-nettement leur intrieur les corpuscules, et on continue les voir, de plus en plus ples, jusqu'au moment o les fibrilles elles-mmes se liqufient et disparaissent dans le suc gastrique. Ce qui constitue la striature, proprement parler, n'est donc pas dtruit, avant la liqufaction de la fibre charnue elle-mme."]

In the viscid fluid surrounding the central sphere of undigested meat there were globules of fat and little bits of fibro-elastic tissue; neither of which were in the least digested. There were also little free parallelograms of yellowish, highly translucent matter. Schiff, in speaking of the digestion of meat by gastric juice, alludes to such parallelograms, and says: —

["Le gonflement par lequel commence la digestion de la viande, rsulte de l'action du suc gastrique acide sur le tissu connectif qui se dissout d'abord, et qui, par sa liqufaction, dsagrge les fibrilles. Celles-ci se dissolvent ensuite en grande partie, mais, avant de passer l'tat liquide, elles tendent se briser en petits fragments transversaux. Les 'sarcous elements' de Bowman, qui ne sont autre chose que les produits de cette division transversale des fibrilles lmentaires, peuvent tre prpars et isols l'aide du suc gastrique, pourvu qu'on n'attend pas jusqu' la liqufaction complte du muscle."]

After an interval of 72 hrs., from the time when the five cubes were placed on the leaves, I opened the four remaining ones. On two nothing could be seen but little masses of transparent viscid fluid; but when these were examined under a high power, fat-globules, bits of fibro-elastic tissue, and some few parallelograms of sarcous matter, could be distinguished, but not a vestige of transverse striae. On the other two leaves there were minute spheres of only partially digested meat in the centre of much transparent fluid.

Бесплатно

0 
(0 оценок)

Читать книгу: «Insectivorous Plants»

Установите приложение, чтобы читать эту книгу бесплатно