Читать бесплатно книгу «The World as Will and Idea (Vol. 1 of 3)» Артура Шопенгауэра полностью онлайн — MyBook

 



 




In the case of unequal catheti also, and indeed generally in the case of every possible geometrical truth, it is quite possible to obtain such a conviction based on perception, because these truths were always discovered by such an empirically known necessity, and their demonstration was only thought out afterwards in addition. Thus we only require an analysis of the process of thought in the first discovery of a geometrical truth in order to know its necessity empirically. It is the analytical method in general that I wish for the exposition of mathematics, instead of the synthetical method which Euclid made use of. Yet this would have very great, though not insuperable, difficulties in the case of complicated mathematical truths. Here and there in Germany men are beginning to alter the exposition of mathematics, and to proceed more in this analytical way. The greatest effort in this direction has been made by Herr Kosack, teacher of mathematics and physics in the Gymnasium at Nordhausen, who added a thorough attempt to teach geometry according to my principles to the programme of the school examination on the 6th of April 1852.

In order to improve the method of mathematics, it is especially necessary to overcome the prejudice that demonstrated truth has any superiority over what is known through perception, or that logical truth founded upon the principle of contradiction has any superiority over metaphysical truth, which is immediately evident, and to which belongs the pure intuition or perception of space.

That which is most certain, and yet always inexplicable, is what is involved in the principle of sufficient reason, for this principle, in its different aspects, expresses the universal form of all our ideas and knowledge. All explanation consists of reduction to it, exemplification in the particular case of the connection of ideas expressed generally through it. It is thus the principle of all explanation, and therefore it is neither susceptible of an explanation itself, nor does it stand in need of it; for every explanation presupposes it, and only obtains meaning through it. Now, none of its forms are superior to the rest; it is equally certain and incapable of demonstration as the principle of the ground of being, or of change, or of action, or of knowing. The relation of reason and consequent is a necessity in all its forms, and indeed it is, in general, the source of the concept of necessity, for necessity has no other meaning. If the reason is given there is no other necessity than that of the consequent, and there is no reason that does not involve the necessity of the consequent. Just as surely then as the consequent expressed in the conclusion follows from the ground of knowledge given in the premises, does the ground of being in space determine its consequent in space: if I know through perception the relation of these two, this certainty is just as great as any logical certainty. But every geometrical proposition is just as good an expression of such a relation as one of the twelve axioms; it is a metaphysical truth, and as such, just as certain as the principle of contradiction itself, which is a metalogical truth, and the common foundation of all logical demonstration. Whoever denies the necessity, exhibited for intuition or perception, of the space-relations expressed in any proposition, may just as well deny the axioms, or that the conclusion follows from the premises, or, indeed, he may as well deny the principle of contradiction itself, for all these relations are equally undemonstrable, immediately evident and known a priori. For any one to wish to derive the necessity of space-relations, known in intuition or perception, from the principle of contradiction by means of a logical demonstration is just the same as for the feudal superior of an estate to wish to hold it as the vassal of another. Yet this is what Euclid has done. His axioms only, he is compelled to leave resting upon immediate evidence; all the geometrical truths which follow are demonstrated logically, that is to say, from the agreement of the assumptions made in the proposition with the axioms which are presupposed, or with some earlier proposition; or from the contradiction between the opposite of the proposition and the assumptions made in it, or the axioms, or earlier propositions, or even itself. But the axioms themselves have no more immediate evidence than any other geometrical problem, but only more simplicity on account of their smaller content.

When a criminal is examined, a procès-verbal is made of his statement in order that we may judge of its truth from its consistency. But this is only a makeshift, and we are not satisfied with it if it is possible to investigate the truth of each of his answers for itself; especially as he might lie consistently from the beginning. But Euclid investigated space according to this first method. He set about it, indeed, under the correct assumption that nature must everywhere be consistent, and that therefore it must also be so in space, its fundamental form. Since then the parts of space stand to each other in a relation of reason and consequent, no single property of space can be different from what it is without being in contradiction with all the others. But this is a very troublesome, unsatisfactory, and roundabout way to follow. It prefers indirect knowledge to direct, which is just as certain, and it separates the knowledge that a thing is from the knowledge why it is, to the great disadvantage of the science; and lastly, it entirely withholds from the beginner insight into the laws of space, and indeed renders him unaccustomed to the special investigation of the ground and inner connection of things, inclining him to be satisfied with a mere historical knowledge that a thing is as it is. The exercise of acuteness which this method is unceasingly extolled as affording consists merely in this, that the pupil practises drawing conclusions, i. e., he practises applying the principle of contradiction, but specially he exerts his memory to retain all those data whose agreement is to be tested. Moreover, it is worth noticing that this method of proof was applied only to geometry and not to arithmetic. In arithmetic the truth is really allowed to come home to us through perception alone, which in it consists simply in counting. As the perception of numbers is in time alone, and therefore cannot be represented by a sensuous schema like the geometrical figure, the suspicion that perception is merely empirical, and possibly illusive, disappeared in arithmetic, and the introduction of the logical method of proof into geometry was entirely due to this suspicion. As time has only one dimension, counting is the only arithmetical operation, to which all others may be reduced; and yet counting is just intuition or perception a priori, to which there is no hesitation in appealing here, and through which alone everything else, every sum and every equation, is ultimately proved. We prove, for example, not that (7 + 9 × 8 – 2)/3 = 42; but we refer to the pure perception in time, counting thus makes each individual problem an axiom. Instead of the demonstrations that fill geometry, the whole content of arithmetic and algebra is thus simply a method of abbreviating counting. We mentioned above that our immediate perception of numbers in time extends only to about ten. Beyond this an abstract concept of the numbers, fixed by a word, must take the place of the perception; which does not therefore actually occur any longer, but is only indicated in a thoroughly definite manner. Yet even so, by the important assistance of the system of figures which enables us to represent all larger numbers by the same small ones, intuitive or perceptive evidence of every sum is made possible, even where we make such use of abstraction that not only the numbers, but indefinite quantities and whole operations are thought only in the abstract and indicated as so thought, as [sqrt](r^b) so that we do not perform them, but merely symbolise them.

We might establish truth in geometry also, through pure a priori perception, with the same right and certainty as in arithmetic. It is in fact always this necessity, known through perception in accordance with the principle of sufficient reason of being, which gives to geometry its principal evidence, and upon which in the consciousness of every one, the certainty of its propositions rests. The stilted logical demonstration is always foreign to the matter, and is generally soon forgotten, without weakening our conviction. It might indeed be dispensed with altogether without diminishing the evidence of geometry, for this is always quite independent of such demonstration, which never proves anything we are not convinced of already, through another kind of knowledge. So far then it is like a cowardly soldier, who adds a wound to an enemy slain by another, and then boasts that he slew him himself.22

After all this we hope there will be no doubt that the evidence of mathematics, which has become the pattern and symbol of all evidence, rests essentially not upon demonstration, but upon immediate perception, which is thus here, as everywhere else, the ultimate ground and source of truth. Yet the perception which lies at the basis of mathematics has a great advantage over all other perception, and therefore over empirical perception. It is a priori, and therefore independent of experience, which is always given only in successive parts; therefore everything is equally near to it, and we can start either from the reason or from the consequent, as we please. Now this makes it absolutely reliable, for in it the consequent is known from the reason, and this is the only kind of knowledge that has necessity; for example, the equality of the sides is known as established by the equality of the angles. All empirical perception, on the other hand, and the greater part of experience, proceeds conversely from the consequent to the reason, and this kind of knowledge is not infallible, for necessity only attaches to the consequent on account of the reason being given, and no necessity attaches to the knowledge of the reason from the consequent, for the same consequent may follow from different reasons. The latter kind of knowledge is simply induction, i. e., from many consequents which point to one reason, the reason is accepted as certain; but as the cases can never be all before us, the truth here is not unconditionally certain. But all knowledge through sense-perception, and the great bulk of experience, has only this kind of truth. The affection of one of the senses induces the understanding to infer a cause of the effect, but, as a conclusion from the consequent to the reason is never certain, illusion, which is deception of the senses, is possible, and indeed often occurs, as was pointed out above. Only when several of the senses, or it may be all the five, receive impressions which point to the same cause, the possibility of illusion is reduced to a minimum; but yet it still exists, for there are cases, for example, the case of counterfeit money, in which all the senses are deceived. All empirical knowledge, and consequently the whole of natural science, is in the same position, except only the pure, or as Kant calls it, metaphysical part of it. Here also the causes are known from the effects, consequently all natural philosophy rests upon hypotheses, which are often false, and must then gradually give place to more correct ones. Only in the case of purposely arranged experiments, knowledge proceeds from the cause to the effect, that is, it follows the method that affords certainty; but these experiments themselves are undertaken in consequence of hypotheses. Therefore, no branch of natural science, such as physics, or astronomy, or physiology could be discovered all at once, as was the case with mathematics and logic, but required and requires the collected and compared experiences of many centuries. In the first place, repeated confirmation in experience brings the induction, upon which the hypothesis rests, so near completeness that in practice it takes the place of certainty, and is regarded as diminishing the value of the hypothesis, its source, just as little as the incommensurability of straight and curved lines diminishes the value of the application of geometry, or that perfect exactness of the logarithm, which is not attainable, diminishes the value of arithmetic. For as the logarithm, or the squaring of the circle, approaches infinitely near to correctness through infinite fractions, so, through manifold experience, the induction, i. e., the knowledge of the cause from the effects, approaches, not infinitely indeed, but yet so near mathematical evidence, i. e., knowledge of the effects from the cause, that the possibility of mistake is small enough to be neglected, but yet the possibility exists; for example, a conclusion from an indefinite number of cases to all cases, i. e., to the unknown ground on which all depend, is an induction. What conclusion of this kind seems more certain than that all men have the heart on the left side? Yet there are extremely rare and quite isolated exceptions of men who have the heart upon the right side. Sense-perception and empirical science have, therefore, the same kind of evidence. The advantage which mathematics, pure natural science, and logic have over them, as a priori knowledge, rests merely upon this, that the formal element in knowledge upon which all that is a priori is based, is given as a whole and at once, and therefore in it we can always proceed from the cause to the effect, while in the former kind of knowledge we are generally obliged to proceed from the effect to the cause. In other respects, the law of causality, or the principle of sufficient reason of change, which guides empirical knowledge, is in itself just as certain as the other forms of the principle of sufficient reason which are followed by the a priori sciences referred to above. Logical demonstrations from concepts or syllogisms have the advantage of proceeding from the reason to the consequent, just as much as knowledge through perception a priori, and therefore in themselves, i. e., according to their form, they are infallible. This has greatly assisted to bring demonstration in general into such esteem. But this infallibility is merely relative; the demonstration merely subsumes under the first principles of the science, and it is these which contain the whole material truth of science, and they must not themselves be demonstrated, but must be founded on perception. In the few a priori sciences we have named above, this perception is pure, but everywhere else it is empirical, and is only raised to universality through induction. If, then, in the empirical sciences also, the particular is proved from the general, yet the general, on the other hand, has received its truth from the particular; it is only a store of collected material, not a self-constituted foundation.

So much for the foundation of truth. Of the source and possibility of error many explanations have been tried since Plato's metaphorical solution of the dove-cot where the wrong pigeons are caught, &c. (Theætetus, p. 167, et seq.) Kant's vague, indefinite explanation of the source of error by means of the diagram of diagonal motion, will be found in the “Critique of Pure Reason,” p. 294 of the first edition, and p. 350 of the fifth. As truth is the relation of a judgment to its ground of knowledge, it is always a problem how the person judging can believe that he has such a ground of knowledge and yet not have it; that is to say, how error, the deception of reason, is possible. I find this possibility quite analogous to that of illusion, or the deception of the understanding, which has been explained above. My opinion is (and this is what gives this explanation its proper place here) that every error is an inference from the consequent to the reason, which indeed is valid when we know that the consequent has that reason and can have no other; but otherwise is not valid. The person who falls into error, either attributes to a consequent a reason which it cannot have, in which case he shows actual deficiency of understanding, i. e., deficiency in the capacity for immediate knowledge of the connection between the cause and the effect, or, as more frequently happens, he attributes to the effect a cause which is possible, but he adds to the major proposition of the syllogism, in which he infers the cause from the effect, that this effect always results only from this cause. Now he could only be assured of this by a complete induction, which, however, he assumes without having made it. This “always” is therefore too wide a concept, and instead of it he ought to have used “sometimes” or “generally.” The conclusion would then be problematical, and therefore not erroneous. That the man who errs should proceed in this way is due either to haste, or to insufficient knowledge of what is possible, on account of which he does not know the necessity of the induction that ought to be made. Error then is quite analogous to illusion. Both are inferences from the effect to the cause; the illusion brought about always in accordance with the law of causality, and by the understanding alone, thus directly, in perception itself; the error in accordance with all the forms of the principle of sufficient reason, and by the reason, thus in thought itself; yet most commonly in accordance with the law of causality, as will appear from the three following examples, which may be taken as types or representatives of the three kinds of error. (1.) The illusion of the senses (deception of the understanding) induces error (deception of the reason); for example, if one mistakes a painting for an alto-relief, and actually takes it for such; the error results from a conclusion from the following major premise: “If dark grey passes regularly through all shades to white; the cause is always the light, which strikes differently upon projections and depressions, ergo– .” (2.) “If there is no money in my safe, the cause is always that my servant has got a key for it: ergo– .” (3.) “If a ray of sunlight, broken through a prism, i. e., bent up or down, appears as a coloured band instead of round and white as before, the cause must always be that light consists of homogeneous rays, differently coloured and refrangible to different degrees, which, when forced asunder on account of the difference of their refrangibility, give an elongated and variously-coloured spectrum: ergo – bibamus!” – It must be possible to trace every error to such a conclusion, drawn from a major premise which is often only falsely generalised, hypothetical, and founded on the assumption that some particular cause is that of a certain effect. Only certain mistakes in counting are to be excepted, and they are not really errors, but merely mistakes. The operation prescribed by the concepts of the numbers has not been carried out in pure intuition or perception, in counting, but some other operation instead of it.

As regards the content of the sciences generally, it is, in fact, always the relation of the phenomena of the world to each other, according to the principle of sufficient reason, under the guidance of the why

Бесплатно

0 
(0 оценок)

Читать книгу: «The World as Will and Idea (Vol. 1 of 3)»

Установите приложение, чтобы читать эту книгу бесплатно