© Тимур Машнин, 2021
ISBN 978-5-0053-1464-2
Создано в интеллектуальной издательской системе Ridero
Чтобы начать работу с основами многопоточного программирования, давайте начнем с изучения потоков.
Каждая операционная система поддерживает потоки в той или иной форме.
Вначале, все усилия по повышению производительности процессоров были направлены на наращивание тактовой частоты, но со все большим увеличением частоты, наращивать её стало тяжелее, так как это требовало увеличения охлаждения процессоров.
Поэтому инженеры стали добавлять ядра в процессор, так и возникли многоядерные процессоры.
Принцип увеличения производительности процессора за счёт нескольких ядер, заключается в разделении выполнения потоков или различных задач на несколько ядер.
На самом деле, можно сказать, что практически каждый процесс, запущенный у вас в системе, имеет несколько потоков.
Операционная система может виртуально создать для себя множество потоков и выполнять их все как бы одновременно, даже если физически процессор и одноядерный.
Например, Windows – это многозадачная операционная система, то есть она может одновременно выполнять две и более программ или процессов.
И Windows – это также и многопоточная операционная система.
Это означает, что в действительности программы состоят из ряда более простых потоков выполнения.
Выполнение этих потоков планируется так же, как и выполнение процессов.
Если процессор одноядерный, и так как несколько потока выполняются у нас одновременно, то нужно создать для пользователя, эту самую одновременность выполнения.
Операционная система, делает это хитро, за счет переключения между выполнением этих потоков (эти переключения мгновенны и время идет в миллисекундах).
То есть, система некоторое время выполняет один поток, затем резко переключается на выполнение другого потока, и так далее по кругу.
Таким образом, создается впечатление одновременного выполнения нескольких задач.
Но при этом теряется производительность.
Если процессор многоядерный, тогда переключения может не потребоваться.
Система будет посылать каждый поток на отдельное ядро.
Несколько потоков могут выполняться одновременно, каждый на своем ядре.
Но тут есть проблема.
Для использования преимуществ многоядерности, код программы должен быть оптимизирован для выполнения на многоядерных процессорах.
Это означает, что программа, или процесс, должна быть максимально распараллелена в коде по отдельным задачам.
Если у вас есть многоядерный процессор, и у нас есть два ядра или два процессора P0 и P1, у вас будет возможность создать единицы выполнения, называемые потоками, T1, T2, T3.
И операционная система сама позаботится о планировании этих потоков на процессорах по мере их доступности.
Таким образом вы получаете многопоточное выполнение.
Платформа Java обеспечивает поддержку многопоточности с помощью пакета java.util.concurrent.
В многопоточном программировании существуют две основные единицы исполнения – это процессы и потоки.
И многопоточное программирование на Java в основном касается потоков.
Чем отличается поток от процесса?
Процесс имеет автономную среду исполнения.
Обычно процесс имеет полный, приватный набор базовых ресурсов среды выполнения, например, каждый процесс имеет собственное выделенное пространство памяти.
Процессы часто ассоциируются с приложением.
Однако то, что пользователь видит, как одно приложение, может быть на самом деле набором взаимодействующих процессов.
Для облегчения взаимодействия между процессами большинство операционных систем поддерживают Inter Process Communication (IPC).
IPC используется не только для связи между процессами в одной и той же системе, но и процессов в разных системах.
Java поддерживает IPC с помощью сокетов, библиотек RMI и CORBA.
Каждый экземпляр работающей виртуальной машины Java представляет собой один процесс.
Приложение Java может создавать дополнительные процессы с помощью объекта ProcessBuilder.
Потоки существуют в процессе – каждый процесс имеет хотя бы один поток.
Потоки используют общие ресурсы процесса, включая память и открытые файлы.
Это обеспечивает эффективное, но потенциально проблематичное взаимодействие между процессами.
Каждый поток имеет свой собственный стек вызовов, но может обращаться к общим данным других потоков в одном и том же процессе.
Каждый поток имеет свой собственный кеш памяти.
Если поток читает общие данные, он сохраняет эти данные в своем собственном кеше памяти.
Несколько потоков создаются в приложении для обеспечения параллельной или скорее независимой обработки или асинхронного поведения.
Многопоточность обещает быстрее выполнить определенную задачу, поскольку эти задачи можно разделить на подзадачи, и эти подзадачи могут выполняться параллельно или независимо.
При этом ускорение программы с помощью многопоточных вычислений на нескольких процессорах ограничено размером последовательной части программы. Это так называемый закон Амдала.
Этот закон гласит следующее – В случае, когда задача разделяется на несколько частей, суммарное время её выполнения на параллельной системе не может быть меньше времени выполнения самого длинного фрагмента.
Согласно этому закону, ускорение выполнения программы за счёт распараллеливания её инструкций на множестве вычислителей, ограничено временем, необходимым для выполнения её последовательных инструкций.
Потоки имеют собственный стек вызовов, но также могут обращаться к общим данным. Поэтому у вас есть две основные проблемы, проблемы с видимостью и доступом.
Проблема видимости возникает, если поток A читает общие данные, которые позже изменяются потоком B, а поток A не знает об этом изменении.
Проблема доступа может возникнуть, если несколько потоков получают доступ и изменяют одновременно одни и те же общие данные.
Проблема видимости и доступа может привести к сбою в работе – программа перестанет реагировать и войдет в ступор или взаимную блокировку из-за одновременного доступа к данным, или может быть сбой безопасности – программа создаст неверные данные.
Как решаются эти проблемы мы обсудим позже.
Таким образом, каждое приложение имеет хотя бы один поток – или несколько, если учитывать «системные» потоки, которые выполняют такие функции, как управление памятью и обработка событий.
Но с точки зрения программиста, вы начинаете с одного потока, называемого основным потоком.
Этот поток имеет возможность создавать дополнительные потоки.
Вопрос в том, как мы можем создать, запустить и выполнить поток?
В Java каждый поток представлен экземпляром класса Thread.
Создать поток, или экземпляр Thread, можно двумя способами.
Первый способ, это сначала создать объект Runnable.
Интерфейс Runnable определяет один метод run, предназначенный для того, чтобы содержать код, выполняемый в потоке.
После создания, объект Runnable передается конструктору класса Thread.
И поток запускается методом start.
Второй способ, это создать подкласс класса Thread.
Сам класс Thread реализует интерфейс Runnable, и при этом его метод run пустой.
Поэтому нужно создать подкласс класса Thread и предоставить собственную реализацию метода run.
Таким образом, первая ключевая операция – это создание потоков.
Но ключевой момент здесь – вам нужно указать вычисление, которое должно быть выполнено в потоке.
Затем после создания потока, он фактически не начинает выполнение.
Поэтому, следующее, что вам нужно сделать, это вызвать метод start.
Теперь, ваша основная программа сама по себе является потоком.
И у нас есть основной поток, который создает и запускает другой поток.
В другом потоке выполняется свой код.
Теперь основной поток после запуска другого потока может выполнить свой код.
В этом случае у нас параллельно выполняются два куска кода на двух разных ядрах.
Класс Thread содержит метод join.
Метод join может быть использован для того, чтобы приостановить выполнение текущего потока до тех пор, пока другой поток не закончит свое выполнение.
Как правило, мы используем более одного потока.
В этом случае, планировщик потоков планирует потоки, что не гарантирует порядок выполнения потоков.
В идеальном мире все потоки всех программ работают на отдельных процессорах.
Но в реальности, потоки должны разделяться между одним или несколькими процессорами.
Либо JVM, либо операционная система базовой платформы определяют, как распределять ресурс процессора среди потоков – задача, известная как планирование потоков.
Эта часть JVM или операционной системы, которая выполняет планирование потоков, является планировщиком потоков.
Java не заставляет виртуальную машину планировать потоки определенным образом, поэтому планирование потоков зависит от конкретной платформы.
Предположим, у нас есть два потока t1 и t2.
Несмотря на то, что мы запустили потоки последовательно, планировщик потоков не запускает и не завершает их в указанном порядке.
Каждый раз, когда вы запускаете этот код, вы можете получить разные результаты.
А если поток t1 должен использовать вычисления потока t2, что нам делать?
Решить эту проблему мы можем с помощью метода join ().
Этот код запустит второй поток t2, только после завершения первого потока t1, так как метод join приостанавливает выполнение главного потока до тех пор, пока не завершится поток t1.
Если поток прерывается, бросается исключение InterruptedException.
Теперь, предположим, что мы передали в метод run класса MyClass основной поток и применили к нему метод join.
Тогда первый поток будет ждать, когда завершится основной поток, а основной поток будет ждать, когда завершится первый поток.
Возникнет дедлок deadlock или взаимная блокировка потоков.
Для отладки долгоиграющих операций, например, сетевых запросов, часто используется статический метод sleep класса Thread.
Вызов этого метода ставит выполнение текущего потока на паузу, при этом нужно указать количество миллисекунд паузы.
Здесь также нужно обрабатывать исключение InterruptedException.
Это исключение, которое метод бросает, когда другой поток прерывает текущий поток, при работающем методе.
Теперь, вы можете столкнуться с ситуацией, когда вам нужно выполнить некоторые длительные задачи в отдельных потоках.
И возможно, вам нужно будет завершить работу какой-либо задачи еще до того, как задача будет полностью выполнена, с помощью остановки соответствующего потока.
Например, при закрытии приложения, которое может использовать несколько потоков, и они могут быть не завершены
На этой странице вы можете прочитать онлайн книгу «Многопоточное программирование в Java», автора Тимура Машнина. Данная книга имеет возрастное ограничение 12+, относится к жанру «Книги о компьютерах».. Книга «Многопоточное программирование в Java» была издана в 2021 году. Приятного чтения!
О проекте
О подписке