Читать книгу «Воображариум Лобачевского» онлайн полностью📖 — Сергея Александровича Гурина — MyBook.
image
cover

Сергей Гурин
Воображариум Лобачевского

Воображариум Лобачевского.

© Сергей Гурин. Россия, Рязань, 2025 год.

Предисловие

В декабре 2024 года посетил музей истории Казанского федерального университета. Гид, искренне преданная университету женщина, очень увлечённо и познавательно вела экскурсию. Страстный и насыщенный интересными фактами рассказ об истории университета не мог оставить равнодушным.

Однако, наиболее сильное впечатление оставила ее хвалебная речь о геометрии Н.И. Лобачевского, выдающегося математика, а также одного из ректоров КФУ. К тому же, в этом рассказе был упомянут еще один великий бунтарь ученого мира – А. Эйнштейн и его ТО.

Естественно, после этой оды победе Лобачевского над Евклидовой геометрией, и окончании более чем двухтысячелетней самозабвенной борьбы геометров с пресловутым пятым постулатом Евклида, стало необходимо подробнее познакомиться с предметом.

И, следуя рекомендациям самого Николая Ивановича, знакомство с его геометрией решил начать с работы "Геометрические исследования по теории параллельных линий". В электронной библиотеке КФУ, нашлось одноименное издание АН СССР 1945 года, в переводе и с комментариями, а также вступительными статьями и примечаниями профессора В.Ф. Кагана.

Выводы, к которым пришел при прочтении данной работы, изложил в данной статье.

Вводная часть

Начну с предмета «великого геометрического противостояния», завершившегося, как считается, тем самым откровением Лобачевского – пятого постулата Евклидовой геометрии.

Этот постулат или аксиома, в самой распространенной трактовке утверждает, что если две прямые линии пересекает третья прямая линия, и с одной стороны от нее сумма внутренних углов меньше двух прямых углов, то первые две прямые линии с этой стороны обязательно пересекутся (чертеж №1).

Чертеж №1. Представление пятого постулата Евклида в трактовке пересекающихся линий.


Другая популярная трактовка:

–в одной плоскости через точку, не лежащую на прямой линии, можно провести лишь одну другую прямую линию, не пересекающуюся с первой. При этом, внутренние углы с одной стороны от третьей прямой линии, проходящей через ту же точку и пересекающей первые две прямые линии, равны в сумме двум прямым (чертеж №2).


Чертеж №2. Представление пятого постулата Евклида в трактовке единственной параллельной.


И вот эта пятая аксиома Евклидовой геометрии (хотя, как я понимаю, самый ранний из известных текстов с постулатами Евклида моложе его самого более чем на тысячу лет, и как могли измениться первоначальные формулировки, при переписывании за этот срок, одному Евклиду и было бы ведомо), называемая постулатом о параллельности, постоянно будоражила сознание математиков, заставляя их искать доказательства ее истинности. И каждый участник этой борьбы утверждал, что его доказательство лучше, а зачастую и то, что утверждения предыдущих вообще не имеют доказательной силы.

И вот в эту борьбу с Евклидовой параллельностью вступил и Николай Иванович Лобачевский. И хотя, как я понимаю, у него были и другие претензии к Евклидовому описанию геометрии, основное недовольство выражалось именно теории параллельности. Вот его слова (здесь и далее «курсивом в кавычках» выделяю формулировки Николая Ивановича Лобачевского из указанной выше книги):


«Кто не согласится, что никакая математическая наука не должна была бы начинаться с таких темных понятий, с каких, повторяя Евклида, начинаем мы Геометрию; и что нигде в математике нельзя терпеть такого недостатка строгости, какой принуждены были допустить в теории параллельных линий»


Обобщив весь, накопленный до него, опыт доказательств пятого постулата, Лобачевский пришел к выводу, что никто так ничего и не доказал (впрочем, так делали и все предыдущие доказыватели):


«Измерение плоскостей основывается на том, что две линии сходятся, когда они стоят на третьей по одну сторону и когда одна перпендикул, а другая наклонена под острым углом, обращенным к перпендикулу. Линии АВ и CD должны сходиться по достаточном продолжении, если одна из них АВ перпендикулярна к ВС, а другая CD наклонена к ВС под острым углом С, обращенным к перпендикулу АВ. Строгого доказательства сей истины до сих пор не могли сыскать; какие были даны, могут называться только пояснениями, но не заслуживают быть почтены в полном смысле математическими доказательствами».


И конечно же сам Николай Иванович искренне считал, что данную проблему решил:


«Всем известно, что в геометрии теория параллельных до сих пор оставалась несовершенной. Напрасное старание со времен Евклида в продолжение двух тысяч лет заставило меня подозревать, что в самых понятиях еще не заключается той истины, которую хотели доказывать и которую поверить, подобно другим физическим законам, могут лишь опыты, каковы, например, астрономические наблюдения. В справедливости моей догадки будучи наконец убежден и почитая затруднительный вопрос решенным вполне, писал об этом я рассуждение в 1826 году»


При погружении в тему стало очевидно, что в геометрии Лобачевского, претензии не касаются общих взаимоотношений между привычными геометрическими объектами, различия ограничиваются именно нестандартным подходом к вопросу параллельности. И уже этот, принятый за истину, нестандарт используется для дальнейших доказательств специфических, отличных от Евклидовой геометрии, закономерностей. В связи с чем, в данной статье основное внимание обращено на утверждения Лобачевского (он их называет «Предложения»), имеющие отношение к вопросу параллельности. Причем полностью рассуждения Николая Ивановича будут приводиться только если это необходимо.

На этой странице вы можете прочитать онлайн книгу «Воображариум Лобачевского», автора Сергея Александровича Гурина. Данная книга имеет возрастное ограничение 6+,. Произведение затрагивает такие темы, как «занимательная математика», «самиздат». Книга «Воображариум Лобачевского» была написана в 2025 и издана в 2025 году. Приятного чтения!