В обычной геометрии все фигуры считаются жесткими и невзаимозаменяемыми. Квадрат – всегда квадрат, треугольник – всегда треугольник, и первый никогда не может превратиться во второй. Прямые линии обязаны оставаться идеально прямыми, а кривые – кривыми. В топологии же объекты вправе терять свою структурную жесткость и становиться эластичными, оставаясь при этом самими собой по сути, – при условии, что в них не делается разрезов и склеек. Квадрат, например, можно растяжением и сжатием превратить в треугольник, но с точки зрения топологии он останется самим собой: про такие фигуры говорят, что они гомеоморфны. Точно так же обе эти фигуры идентичны кругу (то есть “заполненной” окружности). Если говорить о трех измерениях, то куб гомеоморфен шару (“заполненной” сфере). Иными словами, поверхность куба топологически идентична поверхности сферы. А вот тор, или бублик, от сферы принципиально отличается: как бы вы их ни сжимали и ни растягивали, одинаковых фигур из них не получить.