ESET_NOD32

Цитаты из Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим

Читайте в приложениях:
460 уже добавило
Оценка читателей
4.05
  • По популярности
  • По новизне
  • Книга Судного дня (1086 год) — одно из самых почитаемых сокровищ Британии — была беспрецедентным, всеобъемлющим источником экономических и демографических сведений об английском народе.
    3 В мои цитаты Удалить из цитат
  • ценность данных не уменьшается по мере их потребления. Данные можно обрабатывать снова и снова.
    В мои цитаты Удалить из цитат
  • За последние 50 лет стоимость цифрового хранения урезалась вдвое каждые два года, в то время как плотность хранимых данных увеличивалась в 50 миллионов раз
    В мои цитаты Удалить из цитат
  • Характерное отличие нашего времени состоит в том, что большинство ограничений, присущих сбору данных, исчезли. Технологии достигли того уровня, когда получение и запись огромных объемов данных стали достаточно доступными. Данные можно собрать пассивно, без особых усилий со стороны тех, о ком ведется запись, и даже без их ведома. А поскольку стоимость хранения значительно упала, оправдать хранение данных проще, чем удалить их.
    В мои цитаты Удалить из цитат
  • Но в эпоху больших данных все данные без исключения будут рассматриваться как ценные сами по себе.
    В мои цитаты Удалить из цитат
  • датификацией, под которой подразумевается процесс представления явлений в количественном формате для дальнейшего сведения в таблицу и анализа.
    Датификация — далеко не то же самое, что оцифровка, при которой аналоговая информация преобразуется в двоичный код (или последовательность единиц и нулей), считываемый компьютером.
    В мои цитаты Удалить из цитат
  • Большие данные меняют наш подход к познанию мира. В эпоху малых данных мы руководствовались гипотезами о том, как устроен мир, а затем старались проверить их путем сбора и анализа данных. В дальнейшем наше понимание будет зависеть от изобилия данных, а не от гипотез. Получая и анализируя данные, мы увидим связи, о которых и не подозревали раньше.
    В мои цитаты Удалить из цитат
  • Категории причинности настолько прочно вошли в нашу повседневную жизнь, что мы полагаем, что причинные связи легко показать. Это не так. В отличие от корреляций, математика которых относительно проста, причинность не имеет очевидных математических «доказательств». Мы не можем с легкостью выразить ее в виде обычных уравнений. Таким образом, даже если думать медленно и старательно, то отыскать убедительные причинно-следственные связи непросто. Наш мозг привык к тому, что информации всегда недостаточно, поэтому мы склонны делать выводы на основе ограниченного количества данных. Хотя, как правило, внешних факторов слишком много, чтобы сводить результат к определенной причине.
    В мои цитаты Удалить из цитат
  • Полноценный комплексный анализ определяет так называемые нелинейные отношения между данными.
    В мои цитаты Удалить из цитат
  • В эпоху малых данных в большинстве случаев корреляционный анализ ограничивался поиском линейных отношений, в частности из-за недостаточной вычислительной мощности.
    В мои цитаты Удалить из цитат
  • Вместо подверженного ошибкам подхода на основе гипотез благодаря корреляциям между большими данными у нас есть подход, построенный на данных. И он может быть менее предвзятым, более точным и наверняка менее трудоемким.
    В мои цитаты Удалить из цитат
  • В эпоху больших данных невозможно определить переменные, которые следует рассматривать, лишь на основе личных предположений. Наборы данных слишком велики, а рассматриваемые области, пожалуй, слишком сложны. К счастью, многие ограничения, которые вынуждали нас применять подход на основе гипотез, уже не столь существенны. Теперь у нас настолько много данных и вычислительной мощности, что не приходится вручную выбирать одну закономерность или небольшую горстку наиболее вероятных, а затем изучать их по отдельности. Теперь сложные вычислительные процессы сами выбирают лучшую закономерность
    В мои цитаты Удалить из цитат
  • Вместо того чтобы полагаться на простые корреляции, эксперты пытались интуитивно нащупать подходящие закономерности, исходя из гипотез в рамках определенных теорий — абстрактных представлений о принципах работы чего-либо.
    В мои цитаты Удалить из цитат
  • до перехода на большие данные корреляции имели ограниченную эффективность. Поскольку данные были скудными, а их сбор — дорогостоящим, специалисты по сбору статистики нередко интуитивно определяли вероятную закономерность, а затем собирали соответствующие данные и проводили корреляционный анализ, чтобы выяснить, насколько эта закономерность соответствовала действительности.
    В мои цитаты Удалить из цитат
  • Корреляции не могут сказать нам точно, почему происходит то или иное событие, зато предупреждают о том, какого оно рода. И в большинстве случаев этого вполне достаточно.
    В мои цитаты Удалить из цитат