Читать книгу «Дарвинизм в XXI веке» онлайн полностью📖 — Бориса Жукова — MyBook.
image

Ошибки, которые делают нас

О том, что ген может изменяться, сегодня знают все. Слова “мутация” и “мутант” прочно вошли в разговорный язык – решительно изменив при этом свой первоначальный смысл[8] (как это часто случается с научными терминами, попадающими в обыденную речь). Согласно широко распространенным представлениям, мутации появляются сразу у множества особей, резко противопоставляют их особям нормальным и всегда вредны и опасны – либо для своих носителей, либо для всех остальных. Мутантом же сейчас именуют любое существо с уродливой или просто необычной внешностью – будь то безглазая рыбка, пятирогая коза или абсолютно нормальный, но никогда ранее не виденный вашим собеседником черный слизень.

Кроме того, почти все при слове “мутация” первым делом вспоминают об ионизирующем излучении – урановых рудах, атомных реакторах, рентгеновских установках и озоновых дырах, о Чернобыле и Хиросиме. О химических мутагенах помнят гораздо реже – хотя встреча с ними для человека, не имеющего дела по работе с изотопами и рентгеновскими установками, гораздо вероятнее, чем с радиацией. А вопрос о том, могут ли мутации происходить сами по себе, без радиации и мутагенов, поначалу вызывает замешательство – с чего бы это им тогда происходить?

Любителям анекдотов про чернобыльских мутантов будет, вероятно, интересно узнать, что специальные генетико-популяционные исследования полевок, обитающих в зоне отчуждения Чернобыльской АЭС (и даже конкретно в местах массового выпадения радионуклидов), не выявили сколько-нибудь заметного повышения у них частоты мутаций по сравнению с популяциями тех же видов из районов, не затронутых катастрофой. С этим согласуются и данные японских генетиков, обследовавших детей хибакуся (так в Японии называют тех, кто пережил атомную бомбардировку): частота новых мутаций у них оказалась не выше, чем у других японцев, родившихся в те же годы.

В той же Чернобыльской зоне на многих сильно загрязненных радионуклидами участках выросли целые рощи уродливых сосен – низкорослых, со странно укороченными ветками. Казалось бы, вот они – мутанты. Но когда “чернобыльские бонсаи” дали семена, ученые высеяли их на делянку с нормальным радиационным фоном. И из семян “мутантов” выросли обычные молодые сосенки. Уродство деревьев-родителей оказалось не мутацией, а морфозом: радиация грубо нарушила у них процессы индивидуального развития и формообразования, но практически никак не повлияла на их гены.

Откуда же взялось всеобщее убеждение в том, что радиация – главная и чуть ли не единственная причина мутаций? Косвенно виноват в этом замечательный американский генетик Герман Мёллер. Именно он в 1927 году впервые в мире показал возможность искусственного мутагенеза, использовав для этого рентгеновские лучи. Объектом в этих опытах служило любимейшее существо генетиков того времени – плодовая мушка дрозофила. Именно из-за ее необычайной популярности у коллег Мёллер ее и выбрал: генетику дрозофилы к тому времени уже неплохо изучили, и можно было воспользоваться уже выведенными чистыми линиями (группами организмов, внутри которых отсутствует генетическое разнообразие по одному, нескольким или вообще всем признакам), в которых гораздо легче выявлять вновь возникшие мутации. Впоследствии мутагенное действие всех разновидностей ионизирующего излучения подтвердили на дрожжах и других представителях царства грибов, на бактериях и иных организмах, а также на культурах клеток.

Почему же тогда этот эффект не обнаруживается у полевок, сосен и людей? Во-первых, разные виды излучения обладают разной проникающей способностью. Мёллер использовал рентгеновские лучи, хорошо проникающие даже сквозь значительную толщу биологических тканей[9]. К тому же у дрозофил толщина всех тканей, отделяющих половые клетки от внешней среды, составляет доли миллиметра, и рентгеновские кванты проникают к ним практически беспрепятственно. Тем более это справедливо для микроорганизмов и клеточных культур, где между лучом и клеткой-мишенью нет вообще никаких экранов.

Примерно такой же проникающей способностью обладает гамма-излучение, сходное по природе с рентгеновским: и то и другое представляет собой поток высокоэнергетических электромагнитных волн, только у гамма-лучей энергия (а значит, и разрушительное действие) каждого кванта еще выше. А вот у других видов радиации проникающая способность гораздо ниже. Альфа-частицы (ядра гелия) даже в воздухе летят недалеко, в плотных же средах (в том числе в живых тканях) их проникающая способность измеряется микронами. Бета-частицы (электроны, образовавшиеся в ходе ядерных реакций) проникают в живую ткань на несколько миллиметров[10]. Оба типа частиц полностью поглощаются одеждой. Даже нейтроны, слабо взаимодействующие с веществом из-за своей электрической нейтральности, в тканях пробегают лишь сантиметры.

Таким образом, в природных условиях реальный шанс подействовать непосредственно на половые клетки организмов размером хотя бы с полевку имеет только гамма-излучение (рентгеновские лучи в земных условиях существуют только в сконструированных человеком аппаратах). Это излучение возникает лишь в ходе ядерных реакций. В местах обитания живых организмов такой реакцией может быть только распад того или иного радионуклида – практически всегда сопровождающийся испусканием альфа- или бета-частиц или/и осколков ядер. Поскольку разрушительное действие всех этих видов излучения на незащищенные ткани гораздо сильнее, чем у гамма-лучей[11], организм, попавший под такой “обстрел из всех калибров” (будь то при ядерном взрыве, выбросе на АЭС или естественном выносе на поверхность пород, содержащих радиоактивные элементы), скорее всего, погибнет от рака кожи или даже лучевой болезни раньше, чем его половые клетки получат дозу гамма-лучей, достаточную для существенного повышения числа мутаций в них. Этим, вероятно, и объясняется парадоксальная невосприимчивость геномов разнообразных (но достаточно крупных) организмов к радиационному воздействию.

В отличие от радиации, химические мутагены способны проникать в сколь угодно глубоко лежащие ткани организма любого размера. Но в реальности подавляющее большинство происходящих в природе мутаций не имеют никакого отношения ни к радиации, ни к химии и представляют собой… самые обычные опечатки. Вспомним: каждая клетка несет в себе весь геном – полный набор генов данного организма. Перед делением этот набор должен быть скопирован, чтобы обе дочерние клетки получили по одному экземпляру. Копировальный аппарат клетки обеспечивает такую надежность копирования, о которой мы со всеми нашими средствами технического контроля до сих пор можем только мечтать, – он делает в среднем одну ошибку на десятки или даже сотни миллионов копируемых знаков[12]. Такая точность, поразительная сама по себе, выглядит просто немыслимой, если вспомнить, что речь идет о механизме квантовом: значащие части “букв” нуклеотидного кода – азотистые основания – состоят всего из 12–16 атомов.

Взаимодействие объектов такого размера подчиняется законам квантовой механики – что, в частности, означает, что оно всегда вероятностно и его результат никогда не может быть предопределен однозначно. Тем не менее живым организмам удалось свести долю “нештатных” исходов взаимодействия до неправдоподобно малых величин. Но поскольку, например, наш собственный геном содержит 3,2 миллиарда знаков-нуклеотидов, при каждом делении любой из наших клеток неизбежно возникает сколько-то “опечаток” – мутаций[13]. А поскольку формирование половых клеток тоже включает в себя неоднократное деление[14], то каждый из нас при зачатии гарантированно получает добрую сотню мутаций – опечаток, которых не было ни у мамы, ни у папы. Так что не нам испуганно вздрагивать при слове “мутант” – мы все мутанты. Буквально все до единого[15].

На этом месте читатель, представляющий себе мутации и мутантов по фантастическим ужастикам, нервно начнет осматривать себя: нет ли у него чешуи, копыт, глаз на стебельках, не набухает ли под кожей зачаток третьей руки или второй головы? Не торопитесь пугаться: около 90 % всего объема нашего генома составляют некодирующие участки ДНК, и подавляющее большинство ваших мутаций приходится на них. Из оставшегося десятка немалая доля – это синонимичные замены[16], которые в принципе не могут никак проявиться. Наконец, в любом белке большинство аминокислот не так уж важны для его функции: их замена так же мало затрудняет его работу, как написание “сковародка” или “винограт” – понимание нами смысла неправильно написанного слова. Ну а если уж вам совсем не повезло и какая-то мутация изменила одну из немногих ключевых аминокислот в жизненно важном белке – что ж, как известно, подавляющее большинство генов у нас имеются в двух экземплярах, так что даже если один из них будет производить дефектный белок, нужды вашего организма с успехом обеспечит второй[17].


И тем не менее в каждом поколении рождаются люди, которым не повезло еще сильнее – мутации изменили облик или функциональные возможности их организма. Происходит это по разным причинам. Например, если мутировал ген, расположенный в Х-хромосоме и потому имеющийся у мужчин в единственном экземпляре. Или если дефектный белок, производимый мутантным геном, не просто не выполняет свои функции, а вызывает какие-то нештатные, непредвиденные эффекты (например, если это сигнальный белок, а мутация изменила его таким образом, что, связавшись со своим рецептором, он долго не “слезает” с него, в результате чего рецептор ведет себя как залипшая кнопка). Или – чаще всего – если мутация, не вызывая видимых эффектов, понемногу распространилась в популяции, и в конце концов какой-то дальний потомок мутанта получил ее и от отца, и от матери. Как бы то ни было, мутация, получившая внешнее проявление, поступает на суд естественного отбора – последнего рубежа обороны, ограничивающего распространение вредных мутаций.

О том, насколько важен этот рубеж, можно судить по феномену так называемых псевдогенов. Так называют нуклеотидные последовательности, похожие на те, что у других видов присутствуют в качестве нормальных генов. Отличия невелики, но достаточны, чтобы с псевдогена не мог считываться никакой осмысленный белок.

Подобно кэрролловой Фальшивой Черепахе, которая в юности была Настоящей Черепахой, каждый псевдоген когда-то был настоящим геном. Он работал, производил нужный организму продукт, а если в нем происходила мутация, то естественный отбор отсекал ее или по крайней мере ограничивал ее распространение. Но затем что-то изменилось в условиях или образе жизни обладателей этого гена, и он стал ненужным (как, скажем, ген фермента гулонолактоноксидазы, синтезирующего аскорбиновую кислоту, для обезьян, в избытке получающих этот витамин в своей обычной пище). В новых условиях носители его неработоспособных мутантных версий ни в чем не проигрывали своим нормальным собратьям, и такие мутации не вычищались отбором. В конце концов “правильных” версий гена не осталось вовсе – в ходе многократного копирования все его экземпляры оказались непоправимо испорчены накопившимися опечатками. Теперь если нужда в его продукте вновь возникнет (скажем, человеку после перехода на тепловую обработку пищи очень пригодилась бы способность самостоятельно вырабатывать аскорбинку), использовать старый ген уже невозможно: вернуть ему работоспособность могут только несколько согласованных мутаций. Такое событие по своей вероятности уже мало отличается от чуда. Такова судьба гена, вышедшего из-под контроля отбора[18].

Примерно так обстоит дело с мутациями не только у человека и его ближайших родичей, но у всех живых существ, по крайней мере – у всех эукариот. Про мутации и их отношения с организмом, в котором они происходят, можно рассказать еще очень много интересного, но эта книга – все-таки не о мутациях, а об эволюции. Поэтому ограничимся сказанным, еще раз подчеркнув главное: мутации – это по большей части опечатки, ошибки копирования. Они возникают случайно, им подвержены (хотя и в разной степени) любые участки генома. Мутационный процесс идет постоянно; некоторые факторы окружающей среды могут усиливать или ослаблять его, но полностью он не прекращается никогда. Каждая конкретная мутация (замена конкретного нуклеотида в конкретном гене) крайне редка, так что вероятность одновременного появления в одной популяции нескольких одинаковых мутаций практически равна нулю. Как и всякая случайность, мутация может оказаться счастливой, дающей своему обладателю некоторые дополнительные возможности (о примерах этого мы поговорим несколько позже), но сами по себе мутации не могут создать сколько-нибудь сложной новой структуры. Наконец, мутации происходят во всех делящихся клетках, но значение для эволюции имеют только мутации в тех клетках, которые могут дать начало новому организму (у человека и других высокоразвитых животных это могут быть только половые клетки).

И напоследок. Все сказанное выше относится к так называемым точечным мутациям, они же SNP, или “снипы[19]